keeping in mind that perpendicular lines have negative reciprocal slopes, hmmmm what's the slope of that line above anyway,
![\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{2}-\stackrel{y1}{(-1)}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{1}}}\implies \cfrac{2+1}{3}\implies 1 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B2%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B2%7D-%5Cstackrel%7By1%7D%7B%28-1%29%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B2%2B1%7D%7B3%7D%5Cimplies%201%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so we're really looking for the equation of a line whose slope is -1 and runs through (2,5)

Step-by-step explanation:
7p – 3q
if p= 8 and q = -5
7(8)-3(-5)
56+15
=71
The answer would be that Mario finished his homework at 3:55
If a = first term and r = common ratio we have
a + ar + ar^2 = 13 and ar^2 / a = r^2 = 9
so r = 3
and a + 3a + 9a = 13
so a = 1
so they are 1,3 and 9
2.
in geometric series we have
4 , 4r ,4r^2 , 60
Arithmetic;
4, 4r , 4r + d , 4r + 2d
so we have the system of equations
4r + 2d = 60
4r^2 = 4r + d
From first equation
2r + d = 30
so d = 30 - 2r
Substitute for d in second equation:-
4r^2 - 4r - (30-2r) = 0
4r^2 - 2r - 30 =0
2r^2 - r - 15 = 0
(r - 3)(2r + 5) = 0
r = 3 or -2.5
r must be positive so its = 3
and d = 30 - 2(3) = 24
and the numbers are 4*3 = 12 , 4*3^2 = 36
first 3 are 4 , 12 and 36 ( in geometric)
and last 3 are 12, 36 and 60 ( in arithmetic)
The 2 numbers we ause are 12 and 36.
1 inch = 6 miles
4 inches = ? miles
1 = 6
2 = 12
3 = 18
4 = ?