X^4 - 4x^3 - 9x^2 + 36x = 0
x(x^3 - 4x^2 - 9x + 36) = 0
x(x^2(x - 4) - 9(x - 4) = 0
x(x + 3)(x - 3)(x - 4) = 0
the zeroes are -3, 0, 3, 4 Answer
Answer:
b+6
Problem:
If the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
Step-by-step explanation:
We are given (b+c)/2=8 and d=3b-4.
We are asked to find (c+d)/2 in terms of variable, b.
We need to first solve (b+c)/2=8 for c.
Multiply both sides by 2: b+c=16.
Subtract b on both sides: c=16-b
Now let's plug in c=16-b and d=3b-4 into (c+d)/2:
([16-b]+[3b-4])/2
Combine like terms:
(12+2b)/2
Divide top and bottom by 2:
(6+1b)/1
Multiplicative identity property applied:
(6+b)/1
Anything divided by 1 is that anything:
(6+b)
6+b
b+6
Answer:
94.2 in squared
Step-by-step explanation:
lateral area plus area of both flat sides
37.68 + 2(3.14*3^2)
37.68 + 56.52 = 94.2 in squared
I want to say A because 3 and 5 have 15 and 6:15 is sounds like a ratio and D is just 4/10
XZ ≅ EG and YZ ≅ FG is enough to make triangles to be congruent by HL. Option b is correct.
Two triangles ΔXYZ and ΔEFG, are given with Y and F are right angles.
Condition to be determined that proves triangles to be congruent by HL.
<h3>What is HL of triangle?</h3>
HL implies the hypotenuse and leg pair of the right-angle triangle.
Here, two right-angle triangles ΔXYZ and ΔEFG are congruent by HL only if their hypotenuse and one leg are equal, i.e. XZ ≅ EG and YZ ≅ FG respectively.
Thus, XZ ≅ EG and YZ ≅ FG are enough to make triangles congruent by HL.
Learn more about HL here:
brainly.com/question/3914939
#SPJ1
In ΔXYZ and ΔEFG, angles Y and F are right angles. Which set of congruence criteria would be enough to establish that the two triangles are congruent by HL?
A.
XZ ≅ EG and ∠X ≅ ∠E
B.
XZ ≅ EG and YZ ≅ FG
C.
XZ ≅ FG and ∠X ≅ ∠E
D.
XY ≅ EF and YZ ≅ FG