Answer:
Explanation:
You can build a two-way relative frequency table to represent the data:
These are the columns and rows:
Car No car Total
Boys
Girl
Total
Fill the table
- <em>30% of the children at the school are boys</em>
Car No car Total
Boys 30%
Girl
Total
- <em>60% of the boys at the school arrive by car</em>
That is 60% of 30% = 0.6 × 30% = 18%
Car No car Total
Boys 18% 30%
Girls
Total
By difference you can fill the cell of Boy and No car: 30% - 18% = 12%
Car No car Total
Boy 18% 12% 30%
Girl
Total
Also, you know that the grand total is 100%
Car No car Total
Boy 18% 12% 30%
Girl
Total 100%
By difference you fill the total of Girls: 100% - 30% = 70%
Car No car Total
Boy 18% 12% 30%
Girl 70%
Total 100%
- <em>80% of the girls at the school arrive by car</em>
That is 80% of 70% = 0.8 × 70% = 56%
Car No car Total
Boy 18% 12% 30%
Girl 56% 70%
Total 100%
Now you can finish filling in the whole table calculating the differences:
Car No car Total
Boy 18% 12% 30%
Girl 56% 14% 70%
Total 74% 26% 100%
Having the table completed you can find any relevant probability.
The probability that a child chosen at random from the school arrives by car is the total of the column Car: 74%.
That is because that column represents the percent of boys and girls that that arrive by car: 18% of the boys, 56% of the girls, and 74% of all the the children.
The LCD (least common denominator) is the lowest number that both denominators (12 and 5) go into. The lowest number that both 5 and 12 go into is 60. The LCD of the two fractions is 60.
Answer:
Step-by-step explanation:
# Statement Reasoning
1). KJ║ML Given
2). ∠KLM ≅ ∠LKJ Alternate interior angles
3). KL ≅ LK Reflexive property
4). ΔKJL ≅ ΔLMK SAS congruence postulate
The translation of the question given is
A line that passes through the points A (2,1) and B (6,3) and another line passes through A and through the point (0, y). What is y worth, if both lines are perpendicular?
Answer:
y = 5
Step-by-step explanation:
Line 1 that passes through A (2,1) and B (6,3)
Slope (m1) = 3-1/6-2 = 2/4 = 1/2
y - 1 =
( x -2)
2y - 2 = x- 2
y = 
Line 2 passes through A (2,1) and (0,y)
slope (m2) =
Line 1 and Line 2 are perpendicular
m1*m2 = -1
*
= -1
y-1 = 4
y = 5
slope = -2
Equation of Line 2
Y-1 = -2(x-2)
y -1 = -2x +4
2x +y = 5