Answer:

Step-by-step explanation:
You'll need to get this equation in slope-intercept form by solving for y. I do a little extra here to get it in the correct form, but I think it's pretty clear. Let me know if I need to clarify.

Once it's in slope-intercept form, both the slope and the y-intercept are readily available so you can easily graph it. I graphed both of them in the attached image so you can see that they are the same line.
I think x= 65 I hope this helped
Solution:
To find the equation of line passing through points A (1, 3) and B (3, 7).
we know that, to derive the equation of a line we first need to calculate the slope of the line. Slope m of a line at points
and
is given by -
.
Slope of the line at point A(1,3) and B(3,7)
.
.
.
Equation of a line using a point and a slope , 




The equation of line passing through points A (1, 3) and B (3, 7) : 
I won't tell you the answer but I'll tell you how to do it
first, find the area of the rectangle (lxw)
Next, find area of the triangle (BxHx.5)
Then, subtract the area of the rectangle to the area of the triangle