0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
7.2 - 5 = 2.2 kg m/s is the motmentum of the ball now
the velocity is 2.2/0.4 = 5.5 m/s
Explanation:
63 kg ice skater finishes her performance and crossed the finish line with a speed of 10.8 m/s
Answer:
The moment of inertia is 
Explanation:
From the question we are told that
The frequency is 
The mass of the pendulum is 
The location of the pivot from the center is 
Generally the period of the simple harmonic motion is mathematically represented as

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it
=> ![I = [ \frac{T}{2 \pi } ]^2 * m* g * d](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%2A%20%20m%2A%20%20g%20%2A%20d)
But the period of this simple harmonic motion can also be represented mathematically as

substituting values


So
![I = [ \frac{2.174}{2 * 3.142 } ]^2 * 2.40* 9.8 * 0.380](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7B2.174%7D%7B2%20%2A%203.142%20%7D%20%5D%5E2%20%2A%20%20%202.40%2A%20%209.8%20%2A%200.380)

A sound wave<span> in a steel rail </span>has<span> a </span>frequency of<span> 620 </span>Hz<span> and a </span>wavelength<span> of 10.5 ... Find the </span>speed<span> of </span>a wave<span> with a </span>wavelength of 5<span> m and a </span>frequency of<span> 68 </span>Hz<span>.</span>
<h3>Hello There!!</h3>
<h3><u>Given</u>,</h3>
Force(F) = 150N
Mass(m) = 90kg
<h3><u>To </u><u>Find,</u></h3>
Acceleration(a) = ?
<h3><u>We know,</u></h3>
F= m×a


<h3>Hope this helps</h3>