Answer:
P(O and O) =0.1296
P=0.3778
Step-by-step explanation:
Given that
blood phenotypes in a particular population
A=0.48
B=0.13
AB=0.03
O=0.36
As we know that when A and B both are independent that
P(A and B)= P(A) X P(B)
The probability that both phenotypes O are in independent:
P(O and O)= P(O) X P(O)
P(O and O)= 0.36 X 0.36 =0.1296
P(O and O) =0.1296
The probability that the phenotypes of two randomly selected individuals match:
Here four case are possible
So
P=P(A and A)+P(B and B)+P(AB and AB)+P(O and O)
P=0.48 x 0.48 + 0.13 x 0.13 + 0.03 x 0.03 + 0.36 x 0.36
P=0.3778
The answer to this question would be 5 by 9.
Answer:
7x=11
Step-by-step explanation:
do it
Since f(x) is (strictly) increasing, we know that it is one-to-one and has an inverse f^(-1)(x). Then we can apply the inverse function theorem. Suppose f(a) = b and a = f^(-1)(b). By definition of inverse function, we have
f^(-1)(f(x)) = x
Differentiating with the chain rule gives
(f^(-1))'(f(x)) f'(x) = 1
so that
(f^(-1))'(f(x)) = 1/f'(x)
Let x = a; then
(f^(-1))'(f(a)) = 1/f'(a)
(f^(-1))'(b) = 1/f'(a)
In particular, we take a = 2 and b = 7; then
(f^(-1))'(7) = 1/f'(2) = 1/5