1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jobisdone [24]
3 years ago
15

True or false !!! T or F

Mathematics
1 answer:
trapecia [35]3 years ago
6 0
Tan x = opp/adj

For angle C, opp = 4, and 3 = adj, so

tan C = 4/3

Answer: False
You might be interested in
Can anyone help me with these problems I would really appreciate it
aksik [14]

Answer:

Starting from top left to right each row

1. 9

2. 17.5

3. 10.5

4. 22.5

5. 10

6. 16

7. 9

8. 19

9. 15

I hope that helps.

Step-by-step explanation:

5 0
2 years ago
Determine the center and radius of the following circle equation:<br> x2 + y2 – 10x + 8y + 40 = 0
antiseptic1488 [7]

Answer:

The center of this circle is (5, -4) and the radius is 1.

Step-by-step explanation:

First regroup these terms according to x and y :

x^2 - 10x + y^2 + 8y = -40

Next, complete the square for x^2 - 10x:  x^2 - 10x + 5^2 - 5^2.

and the same for y^2 + 8y:  y^2 + 8y + 16 - 16

Substituting these results into x^2 - 10x + y^2 + 8y = -40, we get:

x^2 - 10x + 5^2 - 5^2 y^2 + 8y + 16 - 16 = -40.

Next, rewrite x^2 - 10x + 25 and y^2 + 8y + 16 as squares of binomials:

Then x^2 - 10x + 5^2 - 5^2 y^2 + 8y + 16 - 16 = -40 becomes:

(x - 5)^2 + (y + 4)^2 - 25 - 16 = -40, or:

(x - 5)^2 + (y + 4)^2 = 1

This equation has the form (x - h)^2 + (y - k)^2 = r^2, where (h, k) is the center and r is the radius.  Matching like terms, we get h = 5, k = -4 and r = 1.

The center of this circle is (5, -4) and the radius is 1.

6 0
3 years ago
Read 2 more answers
Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + sin z j + (x2z + y2)k and S is the top half of
GenaCL600 [577]

Close off the hemisphere S by attaching to it the disk D of radius 3 centered at the origin in the plane z=0. By the divergence theorem, we have

\displaystyle\iint_{S\cup D}\vec F(x,y,z)\cdot\mathrm d\vec S=\iiint_R\mathrm{div}\vec F(x,y,z)\,\mathrm dV

where R is the interior of the joined surfaces S\cup D.

Compute the divergence of \vec F:

\mathrm{div}\vec F(x,y,z)=\dfrac{\partial(xz^2)}{\partial x}+\dfrac{\partial\left(\frac{y^3}3+\sin z\right)}{\partial y}+\dfrac{\partial(x^2z+y^2)}{\partial k}=z^2+y^2+x^2

Compute the integral of the divergence over R. Easily done by converting to cylindrical or spherical coordinates. I'll do the latter:

\begin{cases}x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi\\y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi\\z(\rho,\theta,\varphi)=\rho\cos\varphi\end{cases}\implies\begin{cases}x^2+y^2+z^2=\rho^2\\\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi\end{cases}

So the volume integral is

\displaystyle\iiint_Rx^2+y^2+z^2\,\mathrm dV=\int_0^{\pi/2}\int_0^{2\pi}\int_0^3\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{486\pi}5

From this we need to subtract the contribution of

\displaystyle\iint_D\vec F(x,y,z)\cdot\mathrm d\vec S

that is, the integral of \vec F over the disk, oriented downward. Since z=0 in D, we have

\vec F(x,y,0)=\dfrac{y^3}3\,\vec\jmath+y^2\,\vec k

Parameterize D by

\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

where 0\le u\le 3 and 0\le v\le2\pi. Take the normal vector to be

\dfrac{\partial\vec r}{\partial v}\times\dfrac{\partial\vec r}{\partial u}=-u\,\vec k

Then taking the dot product of \vec F with the normal vector gives

\vec F(x(u,v),y(u,v),0)\cdot(-u\,\vec k)=-y(u,v)^2u=-u^3\sin^2v

So the contribution of integrating \vec F over D is

\displaystyle\int_0^{2\pi}\int_0^3-u^3\sin^2v\,\mathrm du\,\mathrm dv=-\frac{81\pi}4

and the value of the integral we want is

(integral of divergence of <em>F</em>) - (integral over <em>D</em>) = integral over <em>S</em>

==>  486π/5 - (-81π/4) = 2349π/20

5 0
3 years ago
Triangle N Q L has centroid S. Lines are drawn from each point through the centroid to the midpoint of the opposite side to form
Doss [256]

Answer:

36

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
5/6 – 6/12<br><br>I am lost bc I'm not a math person so pls help me?
vovangra [49]

First, we must find the common denominator (12)            ✵

10/12-6/12            ✵                 ✵                              ✵                              ✵

Now, why 10?                                     ✵                   ✵                      ✵

Because we CAN'T just take the denominator and change it; we must change both the denominator AND the numerator:

✵                                      •          -                                      ○          

4/12                  ✧                             ✩                                  ✶            ✺         ✱  

We can simplify, or reduce, this fraction:                  ✱  ✱

1/3              ✩                              ✦                                        ✤

I hope it helps!

*VirtuosoTeen*

7 0
3 years ago
Read 2 more answers
Other questions:
  • How do you write 3.625 as a fraction
    12·2 answers
  • Find the measure of angle D and E Angle A = 90 degrees Angle B = 90 degrees Angle C= Angle D Angle E = 90 degrees ​
    5·1 answer
  • Jared is putting a new deck off the kitchen. The deck will be 94.45 inches deep. He will use 16 boards that are each 5.7 inches
    8·1 answer
  • PLEASE HELP PLEASE 9TH GRADE MATH
    6·1 answer
  • Hi, Is anyone willing to take my AP Calc quiz for me? I’ll pay!!! <br><br><br> Thank you.
    6·1 answer
  • (multiple choice) plz help me!!
    12·1 answer
  • 5. AGHI is an isosceles triangle with a vertex angle H<br> If the M
    11·1 answer
  • What is 4cos2(165°) – 2 expressed as a single trigonometric function? 4cos(330°) 2cos(330°) 4cos(82.5°) 2cos(82.5°)
    15·2 answers
  • A levee protects a town in a low-lying area from flooding. According to geologists, the banks of the levee are eroding (wearing
    11·1 answer
  • Can you guys help me please with these 2 questions
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!