The normal distribution is also known as the Gaussian distribution. The percentage of all possible values of the variable that are less than 4 is 15.87%.
<h3>What is a normal distribution?</h3>
The normal distribution, also known as the Gaussian distribution, is a symmetric probability distribution about the mean, indicating that data near the mean occur more frequently than data distant from the mean. The normal distribution will show as a bell curve on a graph.
A.) The percentage of all possible values of the variable that lie between 5 and 9.
P(5<X<9) = P(X<9) - P(5<X)
= P(z<1.5) - P(-0.5<z)
= 0.9332 - 0.3085
= 0.6247
= 62.47%
B.) The percentage of all possible values of the variable that exceed 1.
P(X>1) = 1 - P(X<-2.5)
= 1-0.0062
= 0.9938
= 99.38%
C.) The percentage of all possible values of the variable that are less than 4.
P(X<4) = P(X <4)
= P(z<-1)
= 0.1587
= 15.87%
Learn more about Normal Distribution:
brainly.com/question/15103234
#SPJ1
Answer:
Sin, Cos, Tan and others are used to calculate the ratios of the sides of a right angled triangle by taking a certain angle as the angle of reference.
On the other hand, Sin‐¹, Cos‐¹ and Tan-¹ are used to find the reference angle used to calculate the ratio of sides.
For this question,
we need to find which option should used to calculate the angle the slide makes with the vertical support.
So the option will have to be either A, C or E.
here, the base is 2.81m and hypotenuse is 3.64m.
we know, Cos = base / hypotenuse
So the angle is given by Cos-¹(2.81/3.64)
Option C
No it is not possible to play 12 games and go on 6 rides
The classifications of the functions are
- A vertical stretch --- p(x) = 4f(x)
- A vertical compression --- g(x) = 0.65f(x)
- A horizontal stretch --- k(x) = f(0.5x)
- A horizontal compression --- h(x) = f(14x)
<h3>How to classify each function accordingly?</h3>
The categories of the functions are given as
- A vertical stretch
- A vertical compression
- A horizontal stretch
- A horizontal compression
The general rules of the above definitions are:
- A vertical stretch --- g(x) = a f(x) if |a| > 1
- A vertical compression --- g(x) = a f(x) if 0 < |a| < 1
- A horizontal stretch --- g(x) = f(bx) if 0 < |b| < 1
- A horizontal compression --- g(x) = f(bx) if |b| > 1
Using the above rules and highlights, we have the classifications of the functions to be
- A vertical stretch --- p(x) = 4f(x)
- A vertical compression --- g(x) = 0.65f(x)
- A horizontal stretch --- k(x) = f(0.5x)
- A horizontal compression --- h(x) = f(14x)
Read more about transformation at
brainly.com/question/1548871
#SPJ1
It will be 256.20 I hope I helped