Answer:
As x goes to negative infinity, g(x) goes to zero.
As x goes to positive infinity, g(x) goes to zero.
(So the answer is the second option)
Step-by-step explanation:
We have the function 
First, let's look at what happens when we input smaller and smaller numbers

As we can see, as we input smaller and smaller numbers, the answer gets smaller.
Eventually, these fractions will be so small that they will get closer and closer to zero.
This same thing applies to larger and larger numbers, so the end behavior of each side will both be zero.
Answer:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Step-by-step explanation:
Previous concepts
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:
Solution to the problem
For this case we want this probability

And using the probability mass function we got:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Find the formula for the polynomial
then solve
Answer:
I think it is 730
Step-by-step explanation:
I hope this helped o(〃^▽^〃)o