Okay , wheres the questions at tho...?
Answer: A 24 cm piece of string is cut into two pieces , one piece is used to form a circle and the other piece is used to form a square.
How should this string be cut so that the sum of the areas is a minimum .
:
Let x = the circumference of the circle
then
(24-x) = the perimeter of the square
:
Find the area of the circle
find r
2*pi*r = x
r =
Find the area of the circle
A =
A =
A = sq/cm, the area of the circle
:
Find the area of the square
A = sq/cm the area of the square
The total area
At = +
Graph this equation, find the min
Min occurs when x=10.6 cm
cut string 10.6 cm from one end
Step-by-step explanation: Hope I help out alot (-: :-)
Answer:
C. 5
Step-by-step explanation:
Use the Distance Formula.
Substitute the values of x1 , y1 , x2 , and y2 .
|AB|² =|(1--2)²+(10-6)²|
|AB|² = |9+16|
|AB| = √ 25
|AB| =5
Answer:
![\sqrt[3]{ - 0.125} = \sqrt{ - 1} \times \sqrt[3]{0.125 } \\ = 5i](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20-%200.125%7D%20%20%3D%20%20%5Csqrt%7B%20-%201%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B0.125%20%7D%20%20%5C%5C%20%20%3D%205i)
here i equals √-1
Step-by-step explanation:
Answer is 5i
If you have any doubts write in comments box.
HAVE A NICE DAY !