Answer: 7
Step-by-step explanation:
7
Answer:
4:3
Step-by-step explanation:
Legit just simplified it.The original ratio is 24:18. First found the greatest common multiple (GCF) and divided both by it. In this case it was 6. So 24/6 = 4 and 18/6 = 3. Now your newly simplified ratio of apples to pears is 4:3.
<span>Dawn was at 6 am.
Variables
a = distance from a to passing point
b = distance from b to passing point
c = speed of hiker 1
d = speed of hiker 2
x = number of hours prior to noon when dawn is
The first hiker travels for x hours to cover distance a, and the 2nd hiker then takes 9 hours to cover that same distance. This can be expressed as
a = cx = 9d
cx = 9d
x = 9d/c
The second hiker travels for x hours to cover distance b, and the 1st hiker then takes 4 hours to cover than same distance. Expressed as
b = dx = 4c
dx = 4c
x = 4c/d
We now have two expressions for x, set them equal to each other.
9d/c = 4c/d
Multiply both sides by d
9d^2/c = 4c
Divide both sides by c
9d^2/c^2 = 4
Interesting... Both sides are exact squares. Take the square root of both sides
3d/c = 2
d/c = 2/3
We now know the ratio of the speeds of the two hikers. Let's see what X is now.
x = 9d/c = 9*2/3 = 18/3 = 6
x = 4c/d = 4*3/2 = 12/2 = 6
Both expressions for x, claim x to be 6 hours. And 6 hours prior to noon is 6am.
We don't know the actual speeds of the two hikers, nor how far they actually walked. But we do know their relative speeds. And that's enough to figure out when dawn was.</span>
Answer:
The maximum variance is 250.
Step-by-step explanation:
Consider the provided function.


Differentiate the above function as shown:

The double derivative of the provided function is:

To find maximum variance set first derivative equal to 0.


The double derivative of the function at
is less than 0.
Therefore,
is a point of maximum.
Thus the maximum variance is:


Hence, the maximum variance is 250.
He would need 11.1 gallons of gas if he was/would drive 296 miles.
12 divided by 320 = .0375
.0375 x 296 = 11.1 Gallons of Gas needed to drive the distance.