Answer: 195.5 or 12 7/32
Step-by-step explanation:
There is no letter tetha in the table so I use α instead. However it is not sence to final result.
The expression is:
(sinα+cosα)/(cosα*(1-cosα))
Lets divide the nominator and denominator by cosα
(sinα/cosα+cosα/cosα)/(cosα*(1-cosα)/cosα)= (tanα+1)/(1-cosα)=
=(8/15+1)/(1-cosα)= 23/(15*(1-cosα)) (1)
As known cos²α=1-sin²α (divide by cos²α both sides of equation)
cos²a/cos²α=1/cos²α-sin²α/cos²α
1=1/cos²α-tg²α
1/cos²α=1+tg²α
cos²α=1/(1+tg²α)
cosα=sqrt(1/(1+tg²α))= +-sqrt(1/(1+64/225))=+-sqrt(225/(225+64))=
=+-sqrt(225/289)=+-15/17 (2)
Substitute in (1) cosα by (2):
1st use cosα=15/17
1) 23/(15*(1-cosα)) =23/(15*(1-15/17))= 23*17/2=195.5
2-nd use cosα=-15/17
2)23/(15*(1-cosα)) =23/(15*(1+15/17))= 23*17/32=12 7/32