Step-by-step explanation:
step 1. let l be the length of the rectangle
step 2. l = 2x + 4
step 3. lx = 390 yd^2
step 4. (2x + 4)x = 390
step 5. 2x^2 +4x = 390
step 6. 2x^2 + 4x - 390 = 0
step 7. -4 +- sqr(4^2 -4(2)(-390))/2(2) quadratic formula
step 8. (-4 +- sqr(3136))/4
step 9. (-4 +- 56)/4
step 10. x = 13yd, l = 2x + 4 = 2(13) + 4 = 30yd.
Answer:
solution given:
let's see only in a right-angled triangle Δ ACD.
AC=3 units
AD=5 units
since Δ ACD is a right-angled triangle. It satisfies Pythagoras law

25=9+
=25-9=16

Now
Area of rectangle Δ ACD=
similarly,

since AB=CE=2.4 units
Δ ACE is a right-angled triangle. It satisfies Pythagoras law.

now
area of trapezoid=area ofΔACD+Area of ΔABC
=6+
identity used is
x³ + y³+ z³– 3xyz = (x + y + z) (x² + y² + z² – xy – yz – zx).
then use
(x+y+z)² = x²+y²+z²+2(xy+yz+xz)
225= 83 + 2(xy+yz+xz)
xy+yz+xz = (225-83)/2
xy+yz+xz= 142/2
xy+yz+xz= 71
ok
now use identity
x³ + y³+ z³– 3xyz = (x + y + z) (x² + y² + z² – xy – yz – zx).
now
x³ + y³+ z³– 3xyz = 15 (83 – xy – yz – zx).
= 15[83 - (71)]
= 15×12
=180
The inequality which represents possible values of the expression 2+sqrt 10 by virtue of the given inequality; 3.1 < sqrt 10 < 3.2 as in the task content is; 5.1 < 2 + sqrt 10 < 5.2.
<h3>Which inequality correctly expresses the possible values of the expression; 2 + √10 as required in the task content?</h3>
It follows from the task content that the expression given is;
3.1 < sqrt 10 < 3.2
Since the given premises is an inequality, it follows that adding the same number to all parts of the inequality stills holds the inequality true.
Hence by adding 2 to all parts of the inequality, we have;
2 + 3.1 < 2 + sqrt 10 < 2 + 3.2
Therefore, we have;
5.1 < 2 + sqrt 10 < 5.2
Ultimately, 5.1 < 2 + sqrt 10 < 5.2 represent the possible values of the expression 2+sqrt 10 as given by the inequality 3.1 < sqrt 10 < 3.2.
Read more on inequalities;
brainly.com/question/24372553
#SPJ1
Answer:
The factors of given quadratic equation
<em> </em>
<em />
Step-by-step explanation:
<u><em>Explanation:-</em></u>
<em>Given quadratic equation 15x² +39 x -18 =0</em>
<em> The factors of 270 = 30 × 9</em>
<em>The quadratic equation 15x² +39 x -18 =0</em>
<em> ⇒ 15 x² +30 x-9x -18=0</em>
<em> ⇒ 15x(x+2) -9( x+2) =0</em>
<em> ⇒( 15x -9)(x+2) = 0</em>
<em> 15x - 9=0 and x+2 =0</em>
<em> 15 x =9 and x = -2</em>
<em> </em>
<em />
<u><em></em></u>