Answer:
C
Step-by-step explanation:
I think it is C. Sorry if I'm wrong.
100% ............. 2.20
40% ............. x
-----------------------------
x=40*2.20/100
x=88 / 100
x= 0.88
The answer is x=0.88
3.2-5.7=-2.5 so its have to be a negative because a smaller number subtract a bigger number have to be equal to a negative number.
Answer:
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}3&1\\4&-2\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The general matrix representation for this transformation would be:
![\left[\begin{array}{cc}x&y\end{array}\right] * A = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
As the matrix A should have the same amount of rows as columns in the firs matrix and the same amount of columns as the result matrix it should be a 2x2 matrix.
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Solving the matrix product you have that the members of the result matrix are:
3x+4y = a*x + c*y
x - 2y = b*x + d*y
So the matrix A should be:
![\left[\begin{array}{cc}3&1\\4&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D)