Based on the information provided, it follows that there are 1,728 possible seating arrangements.
<h3>How can we find the number of possible arrangements?</h3>
To find the number of arrangements in this problem situation we must take into account the following key factors:
- Chris only has 1 possible seat.
- Jo has 2 possible seats.
- Dave, Alex, and Barb have 3 possible seats.
- Gareth, Fred, and Eddie have 3 possible seats.
- There are 4 other adults who do not have a preference in seats but have the possibility of using 4 seats.
According to the above, we must use the factorization of these numbers to find out the number of possibilities we have to seat them.
<h3>What is factoring?</h3>
A factorial function is a mathematical tool that is characterized by using the exclamation mark “!” behind a number. The factorial function is used to express that the number accompanied by the symbol must be multiplied by all positive integers between that number and 1.
In accordance with the above, in the problem situation that we must solve, we must use the factorial function with the possibilities of:
- Dave, Alex and Barb: 3! = 3 × 2 × 1 = 6
- Gareth, Fred and Eddie: 3! = 3 × 2 × 1 = 6
- Other 4 adults: 4! = 4 × 3 × 2 × 1 = 24
Subsequently, to calculate the number of total possibilities of the entire group we must multiply the possibilities of each group and individual as shown below:
- Number of possibilities = 1 × 2 × 6 × 6 × 24
- Number of possibilities = 1728
Learn more about the factorial function in: brainly.com/question/16674303
Answer:
1. k=0
2. yes, result is still a polynomial.
3. yes, f and g must have the same degree to have deg(f+g) < deg(f) or deg(g)
Step-by-step explanation:
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x)
for k=0 any polynomial f(x) will reduce f(k) to the constant term.
2. If we multiply a polynomial by a constant, is the result a polynomial?
Yes, If we multiply a polynomial by a constant, the result is always a polynomial.
3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Yes.
If
deg(f+g) < deg(f) and
deg(f+g) < deg(g)
then it means that the two leading terms cancel out, which can happen only if f and g have the same degree.
Answer:
518
i don't know if this needs much explaining.
I have no idea what you're talking about. Can you explain in detail plz?