Answer:top left corner
Step-by-step explanation:
To calculate the area between both curves, we must calculate the following integrals:
int a-b [f (x)] dx
int a-b: integral from a to b
f (x): function
Enter [0, (π / 2)]
int 0-π / 2 [(7 cos (x) -7sin (x))] dx = int 0 -π / 2 [(7 cos (x)] dx + int 0-π / 2 [-7sin (x) )] dx
Calculated:
int 0-π / 2 [(7 cos (x)] dx = 7 (sin (π / 2) - sin (0)) = 7 (1-0) = 7
int 0-π / 2 [-7 sin (x))] dx = 7 (cos (π / 2) - cos (0)) = 7 (0-1) = - 7
int 0-π / 2 [(7 cos (x) -7sin (x))] dx = 7 + (-7) = 0
answer
the area of the region bounded by the x-axis and the curves y = 7sin (x) and y = 7 cos (x) where x∈ [0, (π / 2)] is
A=0
I came up with 4+x/2 Idk if you have to go smaller
Answer:
(x - 3)(5x - 3)
Step-by-step explanation:
Assuming you require the expression to be factorised.
Given
5x² - 18x + 9
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 5 × 9 = 45 and sum = - 18
The factors are - 15 and - 3
Use these factors to split the x- term
5x² - 15x - 3x + 9 ( factor the first/second and third/fourth terms )
= 5x(x - 3) - 3(x - 3) ← factor out (x - 3) from each term
= (x - 3)(5x - 3) ← in factored form
Usando el concepto del área del triángulo, se encuentra que
:
- La altura es de 16.97 unidades.
- La base es de 50.91 unidades.
---------------------------
El área del triángulo de base b y altura h es dada por:

---------------------------
- El area es de <u>432 unidades quadradas</u>, o sea,

- La base mide <u>tres veces su altura</u>, o sea,

---------------------------
<u>Reemplazando en la ecuación para el área</u>, es posible encontrar la altura:







La altura es de 16.97 unidades.
---------------------------
La base es dada <u>en funcion da altura,</u> o sea:

La base es de 50.91 unidades.
Se da un problema similar en brainly.com/question/23931350