1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ierofanga [76]
3 years ago
12

What is d=rt for t.

Mathematics
1 answer:
iren [92.7K]3 years ago
5 0
Whenever you read a problem that involves "how fast", "how far", or "for how long", you should think of the distance equation, d = rt, where d stands for distance, r stands for the (constant or average) rate of speed, and t stands for time.
You might be interested in
Activity 4: Performance Task
Nookie1986 [14]

An arithmetic progression is simply a progression with a common difference among consecutive terms.

  • <em>The sum of multiplies of 6 between 8 and 70 is 390</em>
  • <em>The sum of multiplies of 5 between 12 and 92 is 840</em>
  • <em>The sum of multiplies of 3 between 1 and 50 is 408</em>
  • <em>The sum of multiplies of 11 between 10 and 122 is 726</em>
  • <em>The sum of multiplies of 9 between 25 and 100 is 567</em>
  • <em>The sum of the first 20 terms is 630</em>
  • <em>The sum of the first 15 terms is 480</em>
  • <em>The sum of the first 32 terms is 3136</em>
  • <em>The sum of the first 27 terms is -486</em>
  • <em>The sum of the first 51 terms is 2193</em>

<em />

<u>(a) Sum of multiples of 6, between 8 and 70</u>

There are 10 multiples of 6 between 8 and 70, and the first of them is 12.

This means that:

\mathbf{a = 12}

\mathbf{n = 10}

\mathbf{d = 6}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{10} = \frac{10}2(2*12 + (10 - 1)6)}

\mathbf{S_{10} = 390}

<u>(b) Multiples of 5 between 12 and 92</u>

There are 16 multiples of 5 between 12 and 92, and the first of them is 15.

This means that:

\mathbf{a = 15}

\mathbf{n = 16}

\mathbf{d = 5}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*15 + (16 - 1)5)}

\mathbf{S_{16} = 840}

<u>(c) Multiples of 3 between 1 and 50</u>

There are 16 multiples of 3 between 1 and 50, and the first of them is 3.

This means that:

\mathbf{a = 3}

\mathbf{n = 16}

\mathbf{d = 3}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*3 + (16 - 1)3)}

\mathbf{S_{16} = 408}

<u>(d) Multiples of 11 between 10 and 122</u>

There are 11 multiples of 11 between 10 and 122, and the first of them is 11.

This means that:

\mathbf{a = 11}

\mathbf{n = 11}

\mathbf{d = 11}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{11}2(2*11 + (11 - 1)11)}

\mathbf{S_{11} = 726}

<u />

<u>(e) Multiples of 9 between 25 and 100</u>

There are 9 multiples of 9 between 25 and 100, and the first of them is 27.

This means that:

\mathbf{a = 27}

\mathbf{n = 9}

\mathbf{d = 9}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{9} = \frac{9}2(2*27 + (9 - 1)9)}

\mathbf{S_{9} = 567}

<u>(f) Sum of first 20 terms</u>

The given parameters are:

\mathbf{a = 3}

\mathbf{d = 3}

\mathbf{n = 20}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{20} = \frac{20}2(2*3 + (20 - 1)3)}

\mathbf{S_{20} = 630}

<u>(f) Sum of first 15 terms</u>

The given parameters are:

\mathbf{a = 4}

\mathbf{d = 4}

\mathbf{n = 15}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{15} = \frac{15}2(2*4 + (15 - 1)4)}

\mathbf{S_{15} = 480}

<u>(g) Sum of first 32 terms</u>

The given parameters are:

\mathbf{a = 5}

\mathbf{d = 6}

\mathbf{n = 32}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{32} = \frac{32}2(2*5 + (32 - 1)6)}

\mathbf{S_{32} = 3136}

<u>(g) Sum of first 27 terms</u>

The given parameters are:

\mathbf{a = 8}

\mathbf{d = -2}

\mathbf{n = 27}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{27} = \frac{27}2(2*8 + (27 - 1)*-2)}

\mathbf{S_{27} = -486}

<u>(h) Sum of first 51 terms</u>

The given parameters are:

\mathbf{a = -7}

\mathbf{d = 2}

\mathbf{n = 51}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{51} = \frac{51}2(2*-7 + (51 - 1)*2)}

\mathbf{S_{51} = 2193}

Read more about arithmetic progressions at:

brainly.com/question/13989292

4 0
2 years ago
Read 2 more answers
Does the object below have a measurable volume? How do you know?
JulsSmile [24]

Answer: YES! cuz...

SOLID OBJECT The volume of any regularly shaped solid object is mea- sured in cubic units. The word cubic means that the object is not flat. The volume of an object is calculated by multi- plying three measurements: length, width, and height.

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
The mean ages with standard deviations of four swim teams at a swim club are given below.
xz_007 [3.2K]

Answer:

Statement 2 (The ages of the Stars are the most dispersed from the team’s mean).

Step-by-step explanation:

Standard deviation is one way to measure the average of the data by determining the spread of the data. It actually explains how much the observation points are further away from the mean of the data. Higher the standard deviation, higher the spread of the data and higher is the uncertainty. This means that the team with the highest standard deviation will have the most dispersion. In this case, the standard deviation of 4.1 is the largest number, therefore, the statement "The ages of the Stars are the most dispersed from the team’s mean." is true i.e. the option 2!!!

7 0
3 years ago
Read 2 more answers
PLEASE HELP!!!! PHOTO IS USED!!! DONT SKIP!!!
sattari [20]
The answer would be a because it says to write two equations to support your answer
5 0
3 years ago
Convert the following binary number to the decimal number. 111 1010​
Simora [160]

Answer:

1)

1111 = 0.7

2)

1010 = 0.10

Above one is the binary method But if you need another method it will be like this...... (but most likely follow the above (binary) method.)

1)

1111/1000

0.1111

2)

1010/1000

0.1010

Hope it helped u if yes mark me BRAINLIEST

4 0
3 years ago
Other questions:
  • Someone help me please
    9·1 answer
  • I seriously need help. Please help. Be brainliest answer
    10·1 answer
  • Can someone show me how to do this I don’t just want the answer I need to know exactly how I can get the answer for my next prob
    14·1 answer
  • What is the volume of a cube with side lengths of 5 ft?
    8·2 answers
  • Look at photo NEED HELP ASAP EXPLAIN ANSWER
    8·1 answer
  • Find the x-intercept and y-intercept of the line 4x - 3y= -12.
    9·1 answer
  • What is reasonable first step that can be used to solve the equation 2(x+6)=3(x-4)+5?
    12·1 answer
  • Find the value of x and y in the parallelogram. Helpp
    7·1 answer
  • 12345678998998898998756685666747434565468585668565856 +214146275865978765e4wq3
    14·1 answer
  • 1. Find the angle for insurance and taxes
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!