Hey there!
Let's break this expression into two parts:
6(3x-1) and -10x
To solve the first part, we need to use the distributive property which states:
a(b+c) = ab+ac
Applying that to this problem, we have:
6(3x) + 6(-1) =
18x - 6
Now, we can take that -10x and put it right back in:
18x - 6 - 10x
Combine like terms and subtract the 10x from the 18x to get:
8x - 6
Hope this helps!
Question not well presented
Point S is on line segment RT . Given RS = 4x − 10, ST=2x−10, and RT=4x−4, determine the numerical length of RS
Answer:
The numerical length of RS is 22
Step-by-step explanation:
Given that
RS = 4x − 10
ST=2x−10
RT=4x−4
From the question above:
Point S lies on |RT|
So, RT = RS + ST
Substitute values for each in the above equation to solve for x
4x - 4 = 4x - 10 + 2x - 10 --- collect like terms
4x - 4 = 4x + 2x - 10 - 10
4x - 4 = 6x - 20--- collect like terms
6x - 4x = 20 - 4
2x = 16 --- divide through by 2
2x/2 = 16/2
x = 8
Since, RS = 4x − 10
RS = 4*8 - 10
RS = 32 - 10
RS = 22
Hence, the numerical length of RS is calculated as 22
1. Introduction. This paper discusses a special form of positive dependence.
Positive dependence may refer to two random variables that have
a positive covariance, but other definitions of positive dependence have
been proposed as well; see [24] for an overview. Random variables X =
(X1, . . . , Xd) are said to be associated if cov{f(X), g(X)} ≥ 0 for any
two non-decreasing functions f and g for which E|f(X)|, E|g(X)|, and
E|f(X)g(X)| all exist [13]. This notion has important applications in probability
theory and statistical physics; see, for example, [28, 29].
However, association may be difficult to verify in a specific context. The
celebrated FKG theorem, formulated by Fortuin, Kasteleyn, and Ginibre in
[14], introduces an alternative notion and establishes that X are associated if
∗
SF was supported in part by an NSERC Discovery Research Grant, KS by grant
#FA9550-12-1-0392 from the U.S. Air Force Office of Scientific Research (AFOSR) and
the Defense Advanced Research Projects Agency (DARPA), CU by the Austrian Science
Fund (FWF) Y 903-N35, and PZ by the European Union Seventh Framework Programme
PIOF-GA-2011-300975.
MSC 2010 subject classifications: Primary 60E15, 62H99; secondary 15B48
Keywords and phrases: Association, concentration graph, conditional Gaussian distribution,
faithfulness, graphical models, log-linear interactions, Markov property, positive
The answer is 37/100 as a fraction. Hope this helps you.