1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
3 years ago
7

What is the coefficient of q in the sum of (2q - 3) and (-1q - r)?

Mathematics
1 answer:
Alex787 [66]3 years ago
8 0

Answer:

The Coefficient is 3

Step-by-step explanation:

You might be interested in
HELP!! I WILL GIVE BRAINLIEST
FrozenT [24]

Number one: Just plot down on the number like the numbers you have. Just took the test for this.

3 0
3 years ago
Are the graphs of the lines in the pair parallel? Explain.<br><br> y = 3/7x + 11<br> –3x + 7y = 13
Kobotan [32]
Yes they will be parallel. Now you try to solve it.
5 0
3 years ago
Read 2 more answers
This bar graph shows the money earned from the sale of skateboards one Saturday at four stores. What can you tell from the infor
-BARSIC- [3]

Answer:

its D <3

Step-by-step explanation:

hope this helps :)

6 0
3 years ago
Read 2 more answers
Identify the zeros of the function f(x) = 4x2 − 8x − 1 using the Quadratic Formula. HELP ASAP!!
forsale [732]

1+\dfrac{\sqrt{5}}{2},1-\dfrac{\sqrt{5}}{2}

Step-by-step explanation:

The given equation is 4x^{2}-8x-1

Let a be the coefficient of x^{2}

Let b be the coefficient of x

Let c be the constant.

Then the roots α,β for the equation ax^{2}+bx+c are \dfrac{-b+\sqrt{b^{2}-4ac} }{2a},\dfrac{-b-\sqrt{b^{2}-4ac} }{2a}

So,α=\frac{-b+\sqrt{b^{2}-4ac} }{2a}=\frac{8+\sqrt{64+16} }{8}=\frac{8+4\sqrt{5}}{8}=1+\frac{\sqrt{5}}{2}

β=\frac{-b-\sqrt{b^{2}-4ac} }{2a}=\frac{8-\sqrt{64+16} }{8}=\frac{8-4\sqrt{5}}{8}=1-\frac{\sqrt{5}}{2}.

So the roots are 1+\frac{\sqrt{5}}{2},1+\frac{\sqrt{5}}{2}

5 0
3 years ago
what is the distance between point (-5, -2) and point (8, -3) rounded to the nearest tenth? will appreciate all the help
Sidana [21]
\text {Distance =}  \sqrt{((Y_2-Y_1)^2+(X_2-X_1)^2}

\text {Distance =}  \sqrt{((-3-(-1))^2+(8-(-5))^2}

\text {Distance =}  \sqrt{(-1)^2+(13)^2}

\text {Distance =}  \sqrt{(1+169}

\text {Distance =}  \sqrt{170}

\text {Distance =} 13.0 \text { units}
8 0
3 years ago
Other questions:
  • A farmer intends to plant pine trees 12 feet apart to form a windscreen for her crops. How many trees should she buy if the leng
    9·2 answers
  • Help me ASAP for this question
    7·1 answer
  • How do I simplify (-3)(7)+(-5)(-2)
    5·1 answer
  • What is the value of x in the figure?<br> Enter your answer in the box.<br><br> x =
    8·1 answer
  • The following pairs of equations are equivalent. Describe the operation that occurred in the second equation. 3+9=12 and 3+9-5=1
    9·1 answer
  • A recipe for one batch of cookies uses 5 cups of flour and 2 teaspoons of vanilla. If you use 6 teaspoons of vanilla, how many c
    9·2 answers
  • Perform the indicated operations. Write the answer in standard form, a+bi.<br> (8 - i)^2 + (8 + i)^2
    6·1 answer
  • Write down the number of terms in the following expression
    5·1 answer
  • This is the last one I just really need help I am slow
    6·2 answers
  • Carlos spent a total of $40 at the grocery store. Of this amount, he spent $14 on fruit. What percentage of the total did he spe
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!