The two main variables in an experiment are the independent and dependent variable.
An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable.
A dependent variable is the variable being tested and measured in a scientific experiment.
The dependent variable is 'dependent' on the independent variable. As the experimenter changes the independent variable, the effect on the dependent variable is observed and recorded.
For example, a scientist wants to see if the brightness of light has any effect on a moth being attracted to the light. The brightness of the light is controlled by the scientist. This would be the independent variable. How the moth reacts to the different light levels (distance to light source) would be the dependent variable.
When results are plotted in graphs, the convention is to use the independent variable as the x-axis and the dependent variable as the y-axis.
<h2>Answer:</h2>
The option A is the correct option. The fungi share a mutualistic association with the trees.
<h3>Explanation:</h3>
Mutualism or interspecific cooperation is the way two organisms of different species exist in a relationship in which each individual fitness benefits from the activity of the other. And in this case, both plant and fungi are benefited by each other. The plant provides food and habitat for the living of fungi and fungi, in turn, decompose dead organic matter to provide simple compounds to plants.
While in commensalism only one either plant or fungi can be benefited. And it is also not a parasitic interaction.
Answer:
B, thermal.
Explanation:
Nuclear power waste a lot of energy through heat.
Answer:
In addition to biology, evidence drawn from many different disciplines, including chemistry, geology, and mathematics, supports models of the origin of life on Earth. In order to determine when the first forms of life likely formed, the rate of radioactive decay can be used to determine the age of the oldest rocks (see optional problems C and D, below) exposed on Earth’s surface. These are found to be approximately 3.5 billion years old. The age of rocks can be correlated to fossils of the earliest forms of life. A. The graph compares times of divergence from the last common ancestor based on the fossil record with a "molecular time" constructed by comparing sequences of conserved proteins to determine a mutation rate (after Hedges and Kumar, Trends in Genetics, 2003). Explain how such a molecular clock could be refined to infer time or the evolution of prokaryotes. B. Using a molecular clock constructed from 32 conserved proteins, Hedges and colleagues (Battistuzzi et al., BMC Evol. Biol. 2004) estimated the times during which key biological processes evolved. A diagram based on their work is shown. Connect the time of the origin of life inferred from this diagram with the age of the oldest fossil stromatolites and the age of the oldest exposed rock to show how evidence from different scientific disciplines provides support for the concept of evolution. Evaluate the legitimacy of claims drawn from these different disciplines (biology, geology, and mathematics) regarding the origin of life on Earth. The oldest known rocks are exposed at three locations: Greenland, Australia, and Swaziland. The following application of mathematical methods provides essential evidence of the minimum age of Earth.
Explanation:
Answer;
Blood pressure in the glomerular capillaries.
Explanation;
-The glomerulus is a tuft of small blood vessels called capillaries located within Bowman's capsule within the kidney.
-The process by which glomerular filtration occurs is called renal ultrafiltration. The force of hydrostatic pressure in the glomerulus (the force of pressure exerted from the pressure of the blood vessel itself) is the driving force that pushes filtrate out of the capillaries and into the slits in the nephron.