Answer:
See below
Step-by-step explanation:
the common ratio, r <1 so it CONVERGES (r = 1/2 in this series)
sum = a1 ( 1-r^n) / (1-r) = 1000(1-.5^10)/(1-1/2) = ~1998
for n= 30 this results in ~~2000
As it continues, the terms get smaller and smaller and the SUM converges on 2000.
Alright! So to solve these questions, you need to find out the difference. You can use ratios to solve this. For example, question #25:
A class had 30 pupils at the beginning of this school term, but now has 5 more pupils. What is the percent of increase?
The question is basically asking how much 5 is in ratio to 30. So just divide 5 (the given amount) by 30 (the total amount). The answer is 0.16, or 16%
Answer:
false
Step-by-step explanation:
X times X times X times X times X equals X^5 not 5X
Answer:
3.84% probability that it has a low birth weight
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If we randomly select a baby, what is the probability that it has a low birth weight?
This is the pvalue of Z when X = 2500. So



has a pvalue of 0.0384
3.84% probability that it has a low birth weight