1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
15

How do I solve this? This is grade 9 math.

Mathematics
1 answer:
mafiozo [28]3 years ago
8 0
Answer is A, you should not do negatives on the other side, copy the same monomial on the other sides
You might be interested in
Ivan surveyed 49 randomly selected players from the 134 players of the soccer club teams to see if they wanted the games to be p
nordsb [41]

Twenty-two of the players said that they preferred that the games be played on Saturdays. Ivan correctly determined that the margin of error, E, of his survey using a 99% confidence interval (z*score 2.58) is approximately 18%

Ivan surveyed 49 randomly select

8 0
3 years ago
Read 2 more answers
A) For AQRS use the Triangle Proportionality Theorem to solve for x.
xenn [34]

Answer:

a. x = 14

b. Perimeter = 77

Step-by-step explanation:

a. Based on the Triangle Proportionality Theorem:

\frac{2x - 2}{13} = \frac{21 - 7}{7}

\frac{2x - 2}{13} = \frac{14}{7}

\frac{2x - 2}{13} = 2

Cross multiply

2x - 2 = 2(13)

2x - 2 = 26

Add 2 to both sides

2x = 26 + 2

2x = 28

Divide both sides by 2

x = 14

b. Perimeter of ∆QRS = RQ + QS + RS = (2x - 2) + 13 + 17 + (21 - 7) + 7

Plug in the value of x

= (2(14) - 2) + 13 + 17 + 14 + 7

= 26 + 13 + 17 + 14 + 7

= 77

8 0
3 years ago
Which expression represents the phrase?
nata0808 [166]

Answer:

b

Step-by-step explanation:

the step by step explanation is that because the word increase is the clave word just belive in me

8 0
3 years ago
Read 2 more answers
Si el máximo común divisor (MCD) de 6432 y 132 disminuye en 8, entonces será igual a: * 1 punto 6 4 -2 -6
swat32

Answer:

4

Step-by-step explanation:

Para empezar el maximo común divisor (MCD) de dos números se refiere al número en común que tienen ambos números, entre los cuales pueden ser divididos. En el caso del máximo se refiere al número más alto posible en que ambos números pueden ser divididos.

Para poder saber esto, es necesario anotar los factores en los cuales pueden ser divididos ambos números. Sin embargo, ya que son cantidades altas, puede tomar mucho tiempo determinar esto, por lo tanto nos vamos a la respuesta final.

Sabemos que el MCD de 132 y 6432 es disminuido en 8 unidades, es decir, se le resta 8 al MCD de esos números, y ese número debe coincidir con alguna de las opciones puesta ahí. Por lo tanto, lo que vamos a hacer para resolverlo rápidamente es sumarle 8 a cada una de las opciones y luego, verificaremos si el número obtenido es divisor de 132 y 6432.

<u>Obtención del MCD original:</u>

a) 6 + 8 = 14

b) 4 + 8 = 12

c) 2 + 8 = 6

d) 6 + 8 = 2

Con estos resultados, veamos cual de ellos es el MCD de 132 y 6432.

<u>Para el 6432:</u>

6432 / 2 = 3216

6432 / 6 = 1072

6432 / 12 = 536

6432 / 14 = 459,24

Podemos observar con estos resultados que el 14 queda descartado al tener un resultado decimal, por lo tanto debe ser 2, 6 o 12. Veamos la cuenta con el 132:

<u>Para el 132:</u>

132 / 2 = 66

132 / 6 = 22

132 / 12 = 11

Podemos observar ahora en este caso que el 132 es divisible entre 12, por lo tanto, es el MCD entre 132 y 6432, asi que se concluye que el resultado de disminuir por 8 el MCD de ambos números es:

<h2>12 - 8 = 4</h2>

Exitos

8 0
3 years ago
If g (x) = 1/x^2 then g (x+h) - g (x)/h
nignag [31]

\bf g(x)=\cfrac{1}{x^2}~\hspace{5em}\cfrac{g(x+h)-g(x)}{h}\implies \cfrac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h} \\\\\\ \textit{using the LCD of }(x+h)^2(x^2)\qquad \cfrac{\frac{x^2-(x+h)^2}{(x+h)^2(x^2)}}{h}\implies \cfrac{x^2-(x+h)^2}{h(x+h)^2(x^2)} \\\\\\ \cfrac{x^2-(x^2+2xh+h^2)}{h(x+h)^2(x^2)}\implies \cfrac{\underline{x^2-x^2}-2xh-h^2}{h(x+h)^2(x^2)}\implies \cfrac{-2xh-h^2}{h(x+h)^2(x^2)}


\bf \cfrac{\underline{h}(-2x-h)}{\underline{h}(x+h)^2(x^2)}\implies \cfrac{-2x-h}{(x+h)^2(x^2)}\implies \cfrac{-2x-h}{(x^2+2xh+h^2)(x^2)} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \cfrac{-2x-h}{x^4+2x^3h+x^2h^2}~\hfill

4 0
3 years ago
Other questions:
  • Working 6 days, a worker earned<br> 150000 LL<br> a) How much will he earn by working 21<br> days?
    10·1 answer
  • Helena lost her marbles. But then she found them and put them in 44 bags with mm marbles in each bag. She had 33 marbles left ov
    13·1 answer
  • A coyote can run up to 43 miles per hour while a rabbit can run up to 35 miles per hour.Write two equivalent expressions and the
    9·1 answer
  • A sequence is defined recursively by the formula f(n+1) =f(n) + 3 the first term of the sequences is -4 what is the next term in
    15·1 answer
  • 12=2/7x what is x solve for x
    9·2 answers
  • HELP PLEASE AND THANK YOU 1JAAB
    6·1 answer
  •  Divide 1 hour in the ratio 1 : 9 : 10
    7·1 answer
  • I need a break down of the answer in fraction form
    12·1 answer
  • Answer question in image
    7·1 answer
  • What are the answers I have to put in the yellow boxes?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!