Ts A. Congurent only denotes something being of the same shape and size, so if one wouldn't right and the other wasn't they wouldn't be identical, which is what its about.
The given system of equations in augmented matrix form is
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\-6&1&2&4&-12\\1&-3&-3&5&-20\\-2&5&6&0&12\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C-6%261%262%264%26-12%5C%5C1%26-3%26-3%265%26-20%5C%5C-2%265%266%260%2612%5Cend%7Barray%7D%5Cright%5D)
If you need to solve this, first get the matrix in RREF:
- Add 2(row 1) to row 2, row 1 to -3(row 3), and 2(row 1) to 3(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&11&5&-13&37\\0&19&10&4&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%2611%265%26-13%2637%5C%5C0%2619%2610%264%26-10%5Cend%7Barray%7D%5Cright%5D)
- Add 11(row 2) to -5(row 3), and 19(row 1) to -5(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&-164&132&-1052\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%26-164%26132%26-1052%5Cend%7Barray%7D%5Cright%5D)
- Add 164(row 3) to -91(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&13080&-39240\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%2613080%26-39240%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 4 by 1/13080:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -153(row 4) to row 3:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&0&-364\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%260%26-364%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add 6(row 3) and -8(row 4) to row 2:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&0&0&-10\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%260%260%26-10%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -2(row 2), 4(row 3), and -2(row 4) to row 1:
![\left[\begin{array}{cccc|c}3&0&0&0&3\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%260%260%260%263%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}1&0&0&0&1\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D1%260%260%260%261%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
So the solution to this system is
.
Answer: The answer is x^2 + 4x - 3
Step-by-step explanation:
You just combine like terms, the only ones that can combine is the 6x and -4x. You just subtract them to get the answer of x^2 + 4x - 3.
23 3/4 rounds because you can take 95 divided by 4 to get 23 3/4 rounds
4. The answer is -7 and 7. Start at 0 and count to the left. That’s -7. Then to the right it’s 7