1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
8

△ABC is reflected to form ​​ ​ △A'B'C' ​.

Mathematics
2 answers:
Leno4ka [110]3 years ago
7 0
Reflection across the y-axis
Pepsi [2]3 years ago
3 0

Answer:

Option B.

Step-by-step explanation:

It is given that △ABC is reflected to form​​ △A'B'C' ​.

It is given that the vertices of triangle ABC are A(4,1), B(6,3) and C(2,4).

From the given figure it is clear that vertices of triangle A'B'C' are A'(-4,1), B'(-6,3) and C(-2,4).

The relation between preimage and image is defined by the rule

(x,y)\rightarrow (-x,y)

Reflection across y-axis represented by the above rule.

It means the △ABC is reflected across the y-axis to form​​ △A'B'C' ​.

Therefore, the correct option is B.

You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Please explain your answer as well. Thx!!!
dimulka [17.4K]

Answer:

e^2

Step-by-step explanation:

7 0
3 years ago
What is the answer to this problem -2x – 4 &lt; 3x + 21
horsena [70]

Start with

-2x-4 < 3x+21

Add 2x to both sides:

-4 < 5x+21

Subtract 21 from both sides:

-25 < 5x

Divide both sides by 5. Since it is positive, we don't have to change the inequality sign:

-5 < x

So, the answer is x > -5


6 0
2 years ago
DONT SEND A LINK TO DOWNLOAD A PIC IN THIS <br><br> Is the relation shown a function? Explain.
horsena [70]

Answer:

no because there are more than 1 X inputs.

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
Solve the following problem. Give the equation using x as the​ variable, and give the answer.
Vinil7 [7]

Answer:

A. 3x + (x+8) = -22 - 2x

Step-by-step explanation:

Let the number equal x.

Set up the first half of the equation.

The sum of three times the number and 8 more than the number can be written as:

3x + (x+8)

Sum means that you add the components.

Set up the second half of the equation.

The difference between -22 and twice the number can be written as:

-22 - 2x

Difference means subtraction, and because -22 is written first, that is the number that you subtract <em>from</em>.

If you set the halves of the equation equal, you get:

3x + (x+8) = -22 - 2x

Therefore, the answer is A.

5 0
2 years ago
Other questions:
  • If 6 bottles of perfect water weigh a total of 4 kilograms, what is the weight of 9 bottles?
    7·2 answers
  • i need help with this question... the word "GC" in the question stands for graphic calculator so u could just ignore that part o
    11·1 answer
  • Is lmn congruent to opq if so name the postulate
    9·1 answer
  • 12ad to the third power and which term are like terms?
    13·1 answer
  • How to prove points belong to the same circle
    14·1 answer
  • Why do plasma particles have charges?​
    15·1 answer
  • 5(x+3)-7(6-3)+29=50-3(8-x)
    6·1 answer
  • If you could show the steps that would be great​
    10·2 answers
  • Difination of occupation​
    14·2 answers
  • Find the volume of the solid whose base is the unit circle, and whose cross-sections perpendicular to the x-axis are rectangles
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!