Answer:
true
Step-by-step explanation:
models are a smaller example of an original object
2p-14=4(p+5)
Step 1, parentheses
2p-14=4p+20
Subtract 20 from each side of the equation
2p-34=4p
Subtract 2p from each side
-34=2p
Divide each side by 2
-17=p
Answer:
[ See the attached picture ]
The diagonals of a parallelogram bisect each other.
✧ Given : ABCD is a parallelogram. Diagonals AC and BD intersect at O.
✺ To prove : AC and BD bisect each other at O , i.e AO = OC and BO = OD.
Proof :![\begin{array}{ |c| c | c | } \hline \tt{SN}& \tt{STATEMENTS} & \tt{REASONS}\\ \hline 1& \sf{In \: \triangle ^{s} \:AOB \: and \: COD } \\ \sf{(i)}& \sf{ \angle \: OAB = \angle \: OCD\: (A)}& \sf{AB \parallel \: DC \: and \: alternate \: angles} \\ \sf{(ii)} &\sf{AB = DC(S)}& \sf{Opposite \: sides \: of \: a \: parallelogram} \\ \sf{(iii)} &\sf{ \angle \: OBA= \angle \: ODC(A)} &\sf{AB \parallel \:DC \: and \: alternate \: angles} \\ \sf{(iv)}& \sf{ \triangle \:AOB\cong \triangle \: COD}& \sf{A.S.A \: axiom}\\ \hline 2.& \sf{AO = OC \: and \: BO = OD}& \sf{Corresponding \: sides \: of \: congruent \: triangle}\\ \hline 3.& \sf{AC \: and \: BD \: bisect \: each \: other \: at \: O}& \sf{From \: statement \: (2)}\\ \\ \hline\end{array}. Proved ✔](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%20%7Cc%7C%20c%20%7C%20%20c%20%7C%20%20%7D%20%5Chline%20%5Ctt%7BSN%7D%26%20%5Ctt%7BSTATEMENTS%7D%20%26%20%5Ctt%7BREASONS%7D%5C%5C%20%5Chline%201%26%20%5Csf%7BIn%20%20%5C%3A%20%5Ctriangle%20%5E%7Bs%7D%20%20%5C%3AAOB%20%5C%3A%20and%20%5C%3A%20COD%20%20%7D%20%5C%5C%20%20%5Csf%7B%28i%29%7D%26%20%20%5Csf%7B%20%5Cangle%20%5C%3A%20OAB%20%3D%20%20%5Cangle%20%5C%3A%20OCD%5C%3A%20%28A%29%7D%26%20%5Csf%7BAB%20%5Cparallel%20%5C%3A%20DC%20%5C%3A%20and%20%5C%3A%20alternate%20%5C%3A%20angles%7D%20%5C%5C%20%20%5Csf%7B%28ii%29%7D%20%26%5Csf%7BAB%20%3D%20DC%28S%29%7D%26%20%5Csf%7BOpposite%20%5C%3A%20sides%20%5C%3A%20of%20%5C%3A%20a%20%5C%3A%20parallelogram%7D%20%5C%5C%20%20%5Csf%7B%28iii%29%7D%20%26%5Csf%7B%20%5Cangle%20%5C%3A%20OBA%3D%20%20%5Cangle%20%5C%3A%20ODC%28A%29%7D%20%26%5Csf%7BAB%20%5Cparallel%20%5C%3ADC%20%5C%3A%20and%20%5C%3A%20alternate%20%5C%3A%20angles%7D%20%5C%5C%20%20%5Csf%7B%28iv%29%7D%26%20%5Csf%7B%20%5Ctriangle%20%5C%3AAOB%5Ccong%20%5Ctriangle%20%5C%3A%20COD%7D%26%20%5Csf%7BA.S.A%20%5C%3A%20axiom%7D%5C%5C%20%5Chline%202.%26%20%5Csf%7BAO%20%3D%20OC%20%5C%3A%20and%20%5C%3A%20BO%20%3D%20OD%7D%26%20%5Csf%7BCorresponding%20%5C%3A%20sides%20%5C%3A%20of%20%5C%3A%20congruent%20%5C%3A%20triangle%7D%5C%5C%20%5Chline%203.%26%20%5Csf%7BAC%20%5C%3A%20and%20%5C%3A%20BD%20%5C%3A%20bisect%20%5C%3A%20each%20%5C%3A%20other%20%5C%3A%20at%20%5C%3A%20O%7D%26%20%5Csf%7BFrom%20%5C%3A%20statement%20%5C%3A%20%282%29%7D%5C%5C%20%5C%5C%20%5Chline%5Cend%7Barray%7D.%20%20%20%20%20%20%20%20%20%20%3C%2Fp%3E%3Cp%3EProved%20%E2%9C%94%20%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E)
♕ And we're done! Hurrayyy! ;)
# STUDY HARD! So, Tomorrow you can answer people like this , " Dude , I just bought this expensive mobile phone but it is not that expensive for me" [ - Unknown ] :P
☄ Hope I helped! ♡
☃ Let me know if you have any questions! ♪
☂
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Probability that you will get exactly 4 tails, if you flip a fair coin 7 times is: ![\frac{35}{128}](https://tex.z-dn.net/?f=%5Cfrac%7B35%7D%7B128%7D)
Step-by-step explanation:
We need to find the probability that you will get exactly 4 tails, if you flip a fair coin 7 times.
This is the combination question.
The total combinations will be: 2^7=128
Now, finding number of ways we can get exactly 4 tiles:
We will use the formula:
![^nC_k=\frac{n!}{k!(n-k)!}](https://tex.z-dn.net/?f=%5EnC_k%3D%5Cfrac%7Bn%21%7D%7Bk%21%28n-k%29%21%7D)
in our given question, n= 7, k= 4
Putting values:
![^nC_k=\frac{n!}{k!(n-k)!}\\^7C_4=\frac{7!}{4!*3!}\\ ^7C_4=\frac{7*6*5*4!}{4!*3!}\\ ^7C_4=\frac{7*6*5}{6}\\ ^7C_4=35](https://tex.z-dn.net/?f=%5EnC_k%3D%5Cfrac%7Bn%21%7D%7Bk%21%28n-k%29%21%7D%5C%5C%5E7C_4%3D%5Cfrac%7B7%21%7D%7B4%21%2A3%21%7D%5C%5C%20%5E7C_4%3D%5Cfrac%7B7%2A6%2A5%2A4%21%7D%7B4%21%2A3%21%7D%5C%5C%20%5E7C_4%3D%5Cfrac%7B7%2A6%2A5%7D%7B6%7D%5C%5C%20%5E7C_4%3D35)
So, Probability that you will get exactly 4 tails, if you flip a fair coin 7 times is: ![\frac{35}{128}](https://tex.z-dn.net/?f=%5Cfrac%7B35%7D%7B128%7D)
Keywords: Probability
Learn more about Probability at:
#learnwithBrainly
Answer:
I got (1,2).
Step-by-step explanation:
Process of elimination:
Multiply the second equation by 3 to get same terms, subtract and solve for Y to get 2.
Plug 2 into second equation for Y to get x=1
(1,2)