1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
10

Compare the perimeters of the two regular figures. Which statement is true?

Mathematics
1 answer:
adell [148]3 years ago
4 0

Answer:

(A). The perimeter of the octagon is greater than that of the hexagon.

Step-by-step explanation:

Since, hexagon consists of 6 sides and 6 angles, thus the measure of one angle of the hexagon will be=\frac{(n-2){\timeS}180^{\circ}}{6}

=\frac{(6-2){\timeS}180^{\circ}}{6}

=\frac{(4){\timeS}180^{\circ}}{6}

=120^{\circ}

Now, since MQ is the angle bisector of the one of the angle of the hexagon, therefore ∠QMP=60°.

Now, from ΔQMP. we have

\frac{MP}{MQ}=cos60^{\circ}

MP=\frac{1}{2}

Thus, the perimeter of the hexagon is:

P=12{\times}MP

P=12{\times}\frac{1}{2}

P=6 units

Thus, the perimeter of hexagon is 6 units.

Also, Since, octagon consists of 8 sides and 8 angles, thus the measure of one angle of the octagon will be=\frac{(n-2){\timeS}180^{\circ}}{8}

=\frac{(8-2){\timeS}180^{\circ}}{8}

=\frac{(6){\timeS}180^{\circ}}{8}

=135^{\circ}

Now, since AP is the angle bisector of the one of the angle of the octagon, therefore {\angle}PAC=cos\frac{135}{2}.

From ΔAPC, we have

AC=cos\frac{135}{2}

Now, Perimeter of octagon is:

P=16{\times}cos\frac{135}{2}

P=16{\times}0.382

P=6.122 units

Thus, the perimeter of octagon is 6.122 units.

Now, the perimeter of octagon is greater than perimeter of the hexagon, thus option A is correct that is The perimeter of the octagon is greater than that of the hexagon.

You might be interested in
Bicycle rental on the seawall at the beach cost a mandatory minimum of $5 for the first hour and then $4 for each additional hou
zzz [600]
Cost = fix cost + hourly cost - discount

Cost = 4* [5 + 4x - 4x(20/100)] = 4*[5 + 4x - 0.8x] = 4*[5 + 3.2x] = 20 + 12.8x

Answer: option B) 12.8x + 20
7 0
3 years ago
Read 2 more answers
A disc has a diameter of 21 cm while a mini disc has a diameter of 14cm. Write the ratio of the mini disc diameter to the disc d
Serjik [45]

Answer:

mini disc diameter:disc diameter

14cm:21cm = 7:10.5 = 3.5:5.25 = 1:1.5

4 0
3 years ago
If Aditya can travel 80 km in 2 hours how many kilometres can he travel in 3 and half hours​
ivann1987 [24]

Answer:

distance covered in 2 hours = 80 km

distance covered in 1 hour = 80÷2 = 40 km

distance covered in 7/2 hours = 40 × 7/2

= 140 km

(3 1/2hours = 7/2 hours)

8 0
3 years ago
Jeremy says that the absolute value of 6 is -6. Is he correct? Explain.
emmasim [6.3K]

Answer:

Jermey is not correct because abouslte value is always postive

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
En una hoja de papel cuyo perímetro es de 96 centímetros, se quiere imprimir un volante de manera que el área impresa sea un rec
elixir [45]

Answer:

El perímetro de la región impresa es 72 cm y su área es 288 cm².  

Step-by-step explanation:

1. Tenemos el perímetro de la hoja de papel:

P₁ = 96 cm = 2l₁ + 2a₁  (1)  

Como sabemos el margen superior, inferior, izquierdo y derecho podemos encontrar la relación entre el largo y ancho del rectángulo interno (región impresa) con el largo (l) y ancho (a) del rectángulo externo (hoja de papel):      

l_{2} = l_{1} - (m_{s} + m_{i}) = l_{1} - (3 cm + 2 cm) = l_{1} - 5 cm  (2)            

a_{2} = a_{1} - (m_{d} + m_{iz}) = a_{1} - (2 cm + 5 cm) = a_{1} - 7 cm   (3)    

El perímetro del rectángulo interno es:

P_{2} = 2l_{2} + 2a_{2}    (4)

Introduciendo la ecuación (2) y (3) en (4):

P_{2} = 2l_{2} + 2a_{2} = 2(l_{1} - 5 cm) + 2(a_{1} - 7 cm) = 2l_{1} + 2a_{1} - 10 cm - 14 cm = 96 cm - 24 cm = 72 cm  

Por lo tanto el perímetro del rectángulo interno (región impresa) es 72 cm.

 

2. Ahora para encontrar el área rectángulo interno debemos encontrar el largo y ancho del mismo, sabiendo que:

l_{2} = 2a_{2}     (5)

Introduciendo (5) en (4):

P_{2} = 2l_{2} + 2a_{2} = 2*2a_{2} + 2a_{2} = 6a_{2}

a_{2} = \frac{P_{2}}{6} = \frac{72 cm}{6} = 12 cm

l_{2} = 2a_{2} = 2*12 cm = 24 cm

Entonces el área es:

A_{2} = l_{2}*a_{2} = 12 cm*24 cm = 288 cm^{2}

Por lo tanto el área del rectágulo interno (región impresa) es 288 cm².      

Espero que te sea de utilidad!  

7 0
3 years ago
Other questions:
  • What is 51/2 × 21/3? <br><br> A. 132/5<br> B. 131/6<br> C. 127/8<br> D. 125/6
    13·1 answer
  • The chart shows the number of points Jerry scored on each test this week out of the number of points possible for the test.
    7·1 answer
  • I need help, will someone be kind enough to explain step by step?
    11·1 answer
  • Two students, Ann and Max, factored the trinomial 4x2 − 6x − 4. Ann factored it as 2(x − 2)(2x + 1) and Max factored it as (x −
    12·1 answer
  • Which parent function is f(x) = |x|?
    8·1 answer
  • NEED HELP!!!!!!!!!!!!!!!!!!!!!
    14·1 answer
  • McKenzie gets a base pay of 1,800 per month.She also earns 12% commission on the amount of car sales.If she sells 45,000 worth o
    11·1 answer
  • A group of friends paid $7 each to play a round of golf . It also cost $ 12 to rent a golf cart. As a group, they paid $ 33 alto
    13·1 answer
  • Help me to do this math question ​
    8·2 answers
  • If f(x)=2x^2+3x-6 what is the value of f(2)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!