Your answer is 6%
because 6% =0.06 x 750 =45
45x 5 (years)=225
Answer:
d. 15
Step-by-step explanation:
Putting the values in the shift 2 function
X1 + X2 ≥ 15
where x1= 13, and x2=2
13+12≥ 15
15≥ 15
At least 15 workers must be assigned to the shift 2.
The LP model questions require that the constraints are satisfied.
The constraint for the shift 2 is that the number of workers must be equal or greater than 15
This can be solved using other constraint functions e.g
Putting X4= 0 in
X1 + X4 ≥ 12
gives
X1 ≥ 12
Now Putting the value X1 ≥ 12 in shift 2 constraint
X1 + X2 ≥ 15
12+ 2≥ 15
14 ≥ 15
this does not satisfy the condition so this is wrong.
Now from
X2 + X3 ≥ 16
Putting X3= 14
X2 + 14 ≥ 16
gives
X2 ≥ 2
Putting these in the shift 2
X1 + X2 ≥ 15
13+2 ≥ 15
15 ≥ 15
Which gives the same result as above.
Answer:
There are a lot of things that can go wrong, especially when we have an error in a measure that we use a lot of times (each time, that error increases).
For example, you think that each meter of fence costs $5, but the actual price is $5.30, and you need 40 meters, then you think that you may need to pay:
40*$5 = $200
But they will actually charge you:
40*$5.30 = $212.
Now this is a small example, now let's go to medicine, suppose that you want to trait cancer with radiation in a pacient, if you do not use precise measures for the dosage of radiation or the measures of the tumor, you may cause a lot of damage in the patient. (And similar cases if you want to give some medication and the numbers that you use are not precise, you may overdose the patient)
So the use of precise numbers may be critical in a lot of scenarios.
Answer:
find the classmark of each interval
- forexample
- (140+150)/2
- (150+160)/2
do the same up to (190+200)/2
then
draw a graph by using frequently (number of weeks) on y-axis against classmark on x-axis
Dave arrived to his grandmother's hours in7.75 hours.