The first thief takes (1/2 x + 1) . What remains ? x - (1/2x + 1)
So the 2nd thief takes 2/3 of [ x - (1/2x + 1) ]
What remains ? x - 2/3 [ x - (1/2x + 1) ]
So the 3rd thief takes 2/3 of { x - 2/3 [ x - (1/2x + 1) ] } and he takes 1 more .
What remains ? x - ( 2/3 { x - 2/3 [ x - (1/2x + 1) ] } + 1 )
And that whole ugly thing is equal to ' 1 ', so you can solve it for 'x'..
The whole problem from here on is an exercise in simplifying
an expression with a bunch of 'nested' parentheses in it.
===============================================
This is a lot harder than just solving the problem with logic and
waving your hands in the air. Here's how you would do that:
Start from the end and work backwards:
-- One diamond is left.
-- Before the 3rd thief took 1 more, there were 2.
-- That was 1/3 of what was there before the 3rd man took 2/3.
So he found 6 when he arrived.
-- 6 was 1/3 of what was there before the second thief helped himself.
So there were 18 when the 2nd man arrived.
-- 18 was 1 less than what was there before the first thief took 1 extra.
So he took his 1 extra from 19.
-- 19 was the remaining after the first man took 1/2 of all on the table.
So there were 38 on the table when he arrived.
Thank you for your generous 5 points.
Answer:
no sorry because I am week in maths
<span>To write a two-variable equation, you would first need to know how much Maya’s allowance was. Then, you would need the cost of playing the arcade game and of riding the Ferris wheel. You could let the equation be cost of playing the arcade games plus cost of riding the Ferris wheel equals the total allowance. Your variables would represent the number of times Maya played the arcade game and the number of times she rode the Ferris wheel. With this equation you could solve for how many times she rode the Ferris wheel given the number of times she played the arcade game.</span>
The supplement of 30° is the angle that when added to 30° forms a straight angle (180° ).
Answer:
Step-by-step explanation: