Answer: 3/5
Step-by-step explanation:
if you start off with 5/5 + 3/5, thats 8/5 - 4/5 is 4/5, - 1/5 is 3/5
Answer:
Step-by-step explanation:
We assume the graph is a plot of Sean's distance from home as he drives to work, works 8 hours, then drives home with a 2-hour stop along the way. It also appears that t is measured in hours after midnight.
The graph shows Sean's distance from home between 9 a.m. and 5 p.m. (t=17) is 20 km. Based on our assumptions, ...
Sean's workplace is located 20 km from his home.
__
Speed is the change in distance divided by the change in time. Between 8 a.m. and 9 a.m. Sean's position changes by 20 km. His speed is then ...
(20 km)/(1 h) = 20 km/h
Sean's speed driving to work was 20 km/h.
__
Between 5 p.m. (t=17) and 7 p.m. (t=19), Sean's position changes from 20 km to 10 km from home. That change took 2 hours, so his speed was ...
(10 km)/(2 h) = 5 km/h
Sean's speed between 5 p.m. and 7 p.m. was 5 km/h.
_____
<em>Additional comment</em>
The units of speed (kilometers per hour) tell you it is computed by dividing kilometers by hours. ("Per" in this context means "divided by".)
While the slope of the line on the graph between 5 p.m. and 7 p.m. is negative, the speed is positive. The negative sign means Sean's speed is not away from home, but is toward home. When the direction (toward, away) is included, the result is a vector called "velocity." Speed is just the magnitude of the velocity vector. It ignores direction.
Answer:
x₂ = 7.9156
Step-by-step explanation:
Given the function ln(x)=10-x with initial value x₀ = 9, we are to find the second approximation value x₂ using the Newton's method. According to Newtons method xₙ₊₁ = xₙ - f(xₙ)/f'(xₙ)
If f(x) = ln(x)+x-10
f'(x) = 1/x + 1
f(9) = ln9+9-10
f(9) = ln9- 1
f(9) = 2.1972 - 1
f(9) = 1.1972
f'(9) = 1/9 + 1
f'(9) = 10/9
f'(9) = 1.1111
x₁ = x₀ - f(x₀)/f'(x₀)
x₁ = 9 - 1.1972/1.1111
x₁ = 9 - 1.0775
x₁ = 7.9225
x₂ = x₁ - f(x₁)/f'(x₁)
x₂ = 7.9225 - f(7.9225)/f'(7.9225)
f(7.9225) = ln7.9225 + 7.9225 -10
f(7.9225) = 2.0697 + 7.9225 -10
f(7.9225) = 0.0078
f'(7.9225) = 1/7.9225 + 1
f'(7.9225) = 0.1262+1
f'(7.9225) = 1.1262
x₂ = 7.9225 - 0.0078/1.1262
x₂ = 7.9225 - 0.006926
x₂ = 7.9156
<em>Hence the approximate value of x₂ is 7.9156</em>
Hello isania. the answer is B and E.
Answer:
pls can u tell which grade are you