Answer:
the answer should 60°
Step-by-step explanation:
if look at angle pq and rq the measure of the angle is 60° if u were to spin that angle to a u should get the same measurement
What is the mean, median and mode for...45,50,55,55,55,60,60,60,65,65,70?
Alexxx [7]
Answer:
Mean = 58.18
Median = 60
Modes = 55 and 60
Step-by-step explanation:
To find the mean/average, add up all the numbers and divide the sum by the # of numbers there are (ex. there are 11 numbers so divide the sum by 11).
The median is the middle number of a set. In this case, the middle number is easy to see because the # of numbers is odd, but if it was even, just find the average of the two middle numbers.
The mode is/are the most frequent number(s) in the set. In this set, the numbers that appear the most are 55 and 60.
We are to form the combination of 6 objects taken 2 at a time. This can be expressed as 6C2

This means, there can be 15 different combinations of 2 members that can sit in the front row.
So, the answer to this question is option A
Answer: C. -2 1/8
Step-by-step explanation:
<em>-5 - 3 = -2</em>
<em>5/8 - 1/2 = 1/8</em>
<em>-2 1/8</em>
Answer:
7 square units
Step-by-step explanation:
As with many geometry problems, there are several ways you can work this.
Label the lower left and lower right vertices of the rectangle points W and E, respectively. You can subtract the areas of triangles WSR and EQR from the area of trapezoid WSQE to find the area of triangle QRS.
The applicable formulas are ...
area of a trapezoid: A = (1/2)(b1 +b2)h
area of a triangle: A = (1/2)bh
So, our areas are ...
AQRS = AWSQE - AWSR - AEQR
= (1/2)(WS +EQ)WE -(1/2)(WS)(WR) -(1/2)(EQ)(ER)
Factoring out 1/2, we have ...
= (1/2)((2+5)·4 -2·2 -5·2)
= (1/2)(28 -4 -10) = 7 . . . . square units