The projectile's horizontal and vertical positions at time
are given by
![x=\left(250\dfrac{\rm m}{\rm s}\right)\cos45^\circ\,t](https://tex.z-dn.net/?f=x%3D%5Cleft%28250%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Ccos45%5E%5Ccirc%5C%2Ct)
![y=30\,\mathrm m+\left(250\dfrac{\rm m}{\rm s}\right)\sin45^\circ\,t-\dfrac g2t^2](https://tex.z-dn.net/?f=y%3D30%5C%2C%5Cmathrm%20m%2B%5Cleft%28250%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Csin45%5E%5Ccirc%5C%2Ct-%5Cdfrac%20g2t%5E2)
where
. Solve
for the time
it takes for the projectile to reach the ground:
![30+\dfrac{250}{\sqrt2}t-4.9t^2=0\implies t\approx36.2458\,\mathrm s](https://tex.z-dn.net/?f=30%2B%5Cdfrac%7B250%7D%7B%5Csqrt2%7Dt-4.9t%5E2%3D0%5Cimplies%20t%5Capprox36.2458%5C%2C%5Cmathrm%20s)
In this time, the projectile will have traveled horizontally a distance of
![x=\dfrac{250\frac{\rm m}{\rm s}}{\sqrt2}(36.2458\,\mathrm s)\approx6400\,\mathrm m](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B250%5Cfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%7D%7B%5Csqrt2%7D%2836.2458%5C%2C%5Cmathrm%20s%29%5Capprox6400%5C%2C%5Cmathrm%20m)
The projectile's horizontal and vertical velocities are given by
![v_x=\left(250\dfrac{\rm m}{\rm s}\right)\cos45^\circ](https://tex.z-dn.net/?f=v_x%3D%5Cleft%28250%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Ccos45%5E%5Ccirc)
![v_y=\left(250\dfrac{\rm m}{\rm s}\right)\sin45^\circ-gt](https://tex.z-dn.net/?f=v_y%3D%5Cleft%28250%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5Csin45%5E%5Ccirc-gt)
At the time the projectile hits the ground, its velocity vector has horizontal component approx. 176.77 m/s and vertical component approx. -178.43 m/s, which corresponds to a speed of about
.
Answer:
![\displaystyle x \approx 37.4^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%5Capprox%2037.4%5E%5Ccirc)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
- [Right Triangles Only] SOHCAHTOA
- [Right Triangles Only] cosθ = adjacent over hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
Angle θ = <em>x</em>
Adjacent Leg = 5.8
Hypotenuse = 7.3
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Cosine]:
![\displaystyle cosx^\circ = \frac{5.8}{7.3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20cosx%5E%5Ccirc%20%3D%20%5Cfrac%7B5.8%7D%7B7.3%7D)
- [Fraction] Divide:
![\displaystyle cosx^\circ = 0.794521](https://tex.z-dn.net/?f=%5Cdisplaystyle%20cosx%5E%5Ccirc%20%3D%200.794521)
- [Equality Property] Trig inverse:
![\displaystyle x^\circ = cos^{-1}(0.794521)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E%5Ccirc%20%3D%20cos%5E%7B-1%7D%280.794521%29)
- Evaluate trig inverse:
![\displaystyle x = 37.39^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%2037.39%5E%5Ccirc)
- Round:
![\displaystyle x \approx 37.4^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%5Capprox%2037.4%5E%5Ccirc)
Answer:
x = ±sqrt(5/2)
Step-by-step explanation:
6x^2−2=13
Add 2 to each side
6x^2−2+2=13+2
6x^2 = 15
Divide each side by 6
6/6x^2 = 15/6
x^2 = 5/2
Take the square root of each side
sqrt(x^2) = ±sqrt(5/2)
x = ±sqrt(5/2)
Answer:
square units.
Step-by-step explanation:
We have to use limits to find the area of the region bounded by the graph
, the x-axis, and the vertical lines x=0 and x=1.
So, the area will be
A = ![\int\limits^1_0 {(4 - 2x^{3})} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%202x%5E%7B3%7D%29%7D%20%5C%2C%20dx)
= ![[4x - \frac{x^{4}}{2} ]^{1} _{0}](https://tex.z-dn.net/?f=%5B4x%20-%20%5Cfrac%7Bx%5E%7B4%7D%7D%7B2%7D%20%5D%5E%7B1%7D%20_%7B0%7D)
= ![4 - \frac{1}{2}](https://tex.z-dn.net/?f=4%20-%20%5Cfrac%7B1%7D%7B2%7D)
=
square units. (Answer)
Answer:
The test statistic is ![t = 2.79](https://tex.z-dn.net/?f=t%20%3D%202.79)
Step-by-step explanation:
From the question we are told that
The population mean is ![\mu = 59.3](https://tex.z-dn.net/?f=%5Cmu%20%20%20%3D%2059.3)
The sample size is ![n = 79](https://tex.z-dn.net/?f=n%20%20%3D%20%2079)
The sample mean is ![\= x = 62.4](https://tex.z-dn.net/?f=%5C%3D%20x%20%20%3D%2062.4)
The standard deviation is ![\sigma = 9.86](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%209.86)
Generally the test statistics is mathematically represented as
![t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%5C%3D%20x%20-%20%5Cmu%20%7D%7B%20%5Cfrac%7B%20%5Csigma%7D%7B%20%5Csqrt%7Bn%7D%20%7D%20%7D)
substituting values
![t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%2062.2%20-%20%2059.3%20%7D%7B%20%5Cfrac%7B%20%209.86%7D%7B%20%5Csqrt%7B%2079%7D%20%7D%20%7D)
![t = 2.79](https://tex.z-dn.net/?f=t%20%3D%202.79)