Line is the answer. Cheers mate
Can you please show the whole graph
The total distance traveled by the robot from t=0 to t=9 is 1422 units
Integration is a way in which smaller components are brought together in pieces to form a whole. Integration can be used in finding areas, volumes and so on.
Given that the position s(t) at any time t is given by the function:
s(t)=9t²−90t+4
The total distance traveled by the robot from t=0 to t=9 can be gotten by integrating the position function within the limits 0< t < 9
Therefore:
![Total\ distance = \int\limits^9_0 {s(t) \, dt \\\\Total\ distance = \int\limits^9_0 {(9t^2-90t+4) \, dt\\\\Total\ distance = [3t^3-45t+4t]_0^9\\\\Total\ distance=-1422\ units](https://tex.z-dn.net/?f=Total%5C%20distance%20%3D%20%5Cint%5Climits%5E9_0%20%7Bs%28t%29%20%5C%2C%20dt%20%5C%5C%5C%5CTotal%5C%20distance%20%3D%20%5Cint%5Climits%5E9_0%20%7B%289t%5E2-90t%2B4%29%20%5C%2C%20dt%5C%5C%5C%5CTotal%5C%20distance%20%3D%20%5B3t%5E3-45t%2B4t%5D_0%5E9%5C%5C%5C%5CTotal%5C%20distance%3D-1422%5C%20units)
The total distance is 1422 units
Find out more at: brainly.com/question/22008756
Answer:
R = 13%
Step-by-step explanation:
P = $4000
I = $780
T = 18 months = 18/12 years

Answer:
0.999987
Step-by-step explanation:
Given that
The user is a legitimate one = E₁
The user is a fraudulent one = E₂
The same user originates calls from two metropolitan areas = A
Use Bay's Theorem to solve the problem
P(E₁) = 0.0131% = 0.000131
P(E₂) = 1 - P(E₁) = 0.999869
P(A/E₁) = 3% = 0.03
P(A/E₂) = 30% = 0.3
Given a randomly chosen user originates calls from two or more metropolitan, The probability that the user is fraudulent user is :




= 0.999986898 ≈ 0.999987