Answer:
The solution is similar to the 2-point form of the equation for a line:
y = (y2 -y1)/(x2 -x1)·x + (y1) -(x1)(y2 -y1)/(x2 -x1)
Step-by-step explanation:
Using the two points, write two equations in the unknowns of the equation of the line.
For example, you can use the equation ...
y = mx + b
Then for the points (x1, y1) and (x2, y2) you have two equations in m and b:
b + (x1)m = (y1)
b + (x2)m = (y2)
The corresponding augmented matrix for this system is ...
![\left[\begin{array}{cc|c}1&x1&y1\\1&x2&y2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Cc%7D1%26x1%26y1%5C%5C1%26x2%26y2%5Cend%7Barray%7D%5Cright%5D)
____
The "b" variable can be eliminated by subtracting the first equation from the second. This puts a 0 in row 2 column 1 of the matrix, per <em>Gaussian Elimination</em>.
0 + (x2 -x1)m = (y2 -y1)
Dividing by the value in row 2 column 2 gives you the value of m:
m = (y2 -y1)/(x2 -x1)
This value can be substituted into either equation to find the value of b.
b = (y1) -(x1)(y2 -y1)/(x2 -x1) . . . . . substituting for m in the first equation
Answer:
Picture 1. (x+9)(x+5)
Picture 2. I dont know it im sorry
Step-by-step explanation:
Answer:
-10; no
Step-by-step explanation:
<h2>
-4*3 + 9*2 + 8*-2 = -10</h2><h2>
</h2><h2>
-10 does not equal 0 so it is not perpendicular</h2>
Step-by-step explanation:
Answer:
C. 9
Step-by-step explanation:
Please let me know if you want me to add an explanation as to why this is the answer. I can definitely do that, I just wouldn’t want to write it if you don’t want me to :)