Answer:
20x² - 10x - 30
Step-by-step explanation:
Height = 5
Width = 4x² - 2x - 6
Area of rectangle = length × breadth
Area of triangle = height × width
Area = 5 × (4x² - 2x - 6)
Area = 20x² - 10x - 30
Area of the rectangle is 20x² - 10x - 30
The value of x after the simultaneous rotation and translation of pentagon A to create pentagon B is 110°
<h3>What is the translation of plane figures?</h3>
A plane figure translation is an isometry that translates each position of the figure at a distance and in a direction indicated by the vector.
It is also regarded as a sort of transformation that involves sliding each point in a plane figure at an identical distance in a similar direction.
From the attached image, the value of x after the simultaneous rotation and translation of pentagon A to create pentagon B is 110°.
Learn more about the translation of plane figures here:
brainly.com/question/2467920
Answer:
5 trucks per hour
Step-by-step explanation:
25 trucks ÷ 5
5 hours ÷ 5
= 5 trucks per hour
We have 2 equations to specify the location of the object and we desire the velocity. In order to get that, we simply need to calculate the first derivative of each location equation. So: X = 2 cos(t) X' = 2 (-sin(t)) X' = -2 sin(t) Y = sin(t) Y' = cos(t) So the velocity vector at time t is (-2sin(t), cos(t)). But you want the velocity. So using the Pythagorean theorem we can get that by calculating the square root of the sum of the squares. So: V = sqrt((-2sin(t))^2 + cos^2(t)) V = sqrt(4sin^2(t) + cos^2(t)) Speed at t = 1, is V = sqrt(4sin^2(1) + cos^2(1)) V = sqrt(2.832293673 + 0.291926582) V = sqrt(3.124220255) V = 1.767546394 And t=3: V = sqrt(4sin^2(3) + cos^2(3)) V = sqrt(0.079659427 + 0.980085143) V = sqrt(1.05974457) V = 1.029438959 Now asking for velocity as a function of P, we have a bit of a complication. As shown above, it's trivial to calculate velocity as a function of t. But if all you're given is the X and Y coordinates of the object, we have a bit more work to do. The below equations will be using the trigonometric identity of cos^2(a) + sin^2(a) = 1 for any angle a. X = 2 cos(t) X' = -2 sin(t) We want to get from X which is 2cos(t) to X'^2 which is 4sin^2(t). So: X/2; We now have cos(t) (X/2)^2: We now have cos^2(t) 1-(X/2)^2: We now have sin^2(t) 4(1-(X/2)^2): We now have 4sin^2(t) which is what we want. Time to simplify 4(1 - (X/2)^2) 4(1 - (X^2/4)) 4 - 4(X^2/4) 4 - X^2 Now we need to get from Y to Y'^2. Will do the same as for X to X'^2, but without all the comments. Y = sin(t) Y' = cos(t) Y'^2 = 1 - Y^2 So the equation for the velocity as a function of X,Y we get V = sqrt(4 - X^2 + 1 - Y^2) V = sqrt(5 - X^2 - Y^2) In summary: Position at time t = (2cos(t), sin(t)) Velocity vector at time t = (-2 sin(t), cos(t)) Velocity as function of t is: V = sqrt(4sin^2(t) + cos^2(t)) Velocity as function of P is: V = sqrt(5 - X^2 - Y^2) Is object traveling at constant speed? NO Velocity at t = 1 is: V = 1.767546394 Velocity at t = 2 is: V = 1.029438959
Answer:
t / 6 = # of shirts in each package.
Step-by-step explanation:
total amount of shirts / total packages = # of shirts in each package