Answer:
Base on the vertex (h, k) and the distance p between vertex and directrix, the standard form of parabola is written as:
(x – h)^2 = 4*p(y – k)
We have (-1, -5) as vertex.
=> (x + 1)^2 = 4*p(y + 5)
Now, we find p:
The distance between (-1, -5) and x = -7 is calculated by:
|-1 -(-7)| = |6| = 6
=> (x + 1)^2 = 4*6(y + 5)
=> (x + 1)^2 = 24(y + 5)
Hope this helps!
:)
The difference (-) between 3 times a number (3n) and 21.
3n - 21
The answer is 6.
2x + 4 = 3x - 2
-2x -2x
————————
4 = x - 2
+2 +2
—————
6 = x
Answer:
E-F and E-D
C-B and C-D
Step-by-step explanation:
The circle and triangle are as shown. The options are:
- A-B and C-B
- E-F and E-D
- E-D and C-D
- A-F and E-F
- C-B and C-D
By drawing radius lines from the center of the circle to the tangent points B, D, and F, we can divide the triangle into 3 kites. Therefore, only segments that are legs of the same kite are congruent. So the answer must be E-F and E-D, and C-B and C-D.
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>