You should write numbers in as many ways as you possibly can to make new connections in your brain. Knowing how to write numbers in many different ways can help you solve complex problems more easily. Doing this can also reinforce the mathematical principles and logic you have memorised.
Writing one in many different ways:
1=1/1=2/2=3/3=4/4=(-1)/(-1)=(-2)/(-2)
=1.0=1.00=1.000=(1/2)+(1/2)=(1/3)+(1/3)+(1/3)
=(1/4)+(1/4)+(1/4)+(1/4)
Writing a half in many different ways:
1/2=(1/4)+(1/4)=(1/6)+(1/6)+(1/6)
=(1/8)+(1/8)+(1/8)+(1/8)=4*(1/8)
=2/4=3/6=4/8=5/10=0.5=0.50
etc...etc...
Answer:
D: √(-4)
Step-by-step explanation:
D: √(-4) is not a real number; it's an imaginary one.
Answer:
z^0= 1
(2v+2)^0 = 1
3^0 = 1
0^0= 0
Step-by-step explanation:
When you raise (almost) anything to the power zero, you get 1 and when you raise 0 to any number except 0 is 0
Step-by-step explanation:
If T:Rn→Rm is a linear transformation and if A is the standard matrix of T, then the following are equivalent:
1. T is one-to-one.
2. T(x) = 0 has only the trivial solution x=0.
3. If A is the standard matrix of T, then the columns of A are linearly independent.
Here, A is a mxn matrix where m ≥ n and the rank of A equals n. It implies that the columns of A are linearly independent, for, otherwise, the rank of A would be less than n. Hence the linear transformation represented by A is one-to-one.