Answer:
99% confidence interval: (0.97816,1.03184)
Step-by-step explanation:
We are given the following data set:
1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, 1.03
Formula:
where
are data points,
is the mean and n is the number of observations.


Sum of squares of differences = 0.00001975308642 + 0.001264197531 + 0.000597530864 + 0.001186419753 + 0.0002419753088, + 0.00065308642 + 0.0002419753088 + 0.00001975308642 + 0.000597530864 = 0.0048

Confidence interval:

Putting the values, we get,

