Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx
<h3>
Answer: C) x = 13</h3>
====================================================
Work Shown:
We have a right triangle with legs a = 5 and b = 12. The hypotenuse is c = x which is unknown for now.
Use the pythagorean theorem to find x.
a^2 + b^2 = c^2
5^2 + 12^2 = x^2
25 + 144 = x^2
169 = x^2
x^2 = 169
x = sqrt(169) .... apply the square root to both sides
x = 13
Answer:
w
Step-by-step explanation:
Answer is below..............
Answer:
Horizontal shift of 4 units to the left.
Vertical translation of 8 units downward.
Step-by-step explanation:
Given the quadratic function, y = (x + 4)² - 8, which represents the horizontal and vertical translations of the parent graph, y = x²:
The vertex form of the quadratic function is y = a(x - h)² + k
Where:
The vertex is (h , k), which is either the <u>minimum</u> (upward facing graph) or <u>maximum</u> (downward-facing graph).
The axis of symmetry occurs at <em>x = h</em>.
<em>a</em> = determines whether the graph opens up or down, and makes the graph wider or narrower.
<em>h</em> = determines how far left or right the parent function is translated.
<em>k</em> = determines how far up or down the parent function is translated.
Going back to your quadratic function,
y = (x + 4)² - 8
- The vertex occrs at (-4, -8)
- a is assumed to have a value of 1.
- Given the value of <em>h</em> = -4, then it means that the graph shifted horizontally by <u>4 units to the left</u>.
- Since k = -8, then it implies that the graph translated vertically at <u>8 units downward</u>.
Please mark my answers as the Brainliest, if you find this helpful :)