<span>assume z = ax for simplicity
z(z) = a(ax) = a^2x
let a^2x = 1/16x and solve for a </span>
Answer:
alternate angle to angle RUN is angle POU
Step-by-step explanation:
Alternate angles are defined as angles that are located in opposite positions when we look at them relative to a transverse line that intersects two horizontal lines.
Now, we want to find the alternate angle to angle RUN.
The same transverse line cuts the other horizontal line PQ at point O.
Therefore the alternate angle to angle RUN is angle POU
Answer:
Step-by-step explanation:
the first day he used 30 cups
the second day he used 15% of the remaining cups...a total of 90 cups were used on second day.
so 15%of the remaining cups = 90.....so if u let x be the total cups, then the remaining cups would be x - 30
15% of (x - 30) = 90.....turn ur percent to a decimal..." of " means multiply
0.15(x - 30) = 90
0.15x - 4.5 = 90
0.15x = 90 + 4.5
0.15x = 94.5
x = 94.5 / 0.15
x = 630 total cups <==
lets check..
start with 630 cups....used 30 the first day....leaving u with 600 cups....15% of the remaining cups = 90.....so 15% of 600 = 90....lets check it
15%of 600 = 0.15(600) = 90...yep, thats correct....there were 630 cups in the new un-opened box
Answer:
The probability of SFS and SSF are same, i.e. P (SFS) = P (SSF) = 0.1311.
Step-by-step explanation:
The probability of a component passing the test is, P (S) = 0.79.
The probability that a component fails the test is, P (F) = 1 - 0.79 = 0.21.
Three components are sampled.
Compute the probability of the test result as SFS as follows:
P (SFS) = P (S) × P (F) × P (S)

Compute the probability of the test result as SSF as follows:
P (SSF) = P (S) × P (S) × P (F)

Thus, the probability of SFS and SSF are same, i.e. P (SFS) = P (SSF) = 0.1311.
Answer:
Step-by-step explanation:
1/7 15/2 8 8.14 64