Answer:
sin²x = (1 - cos2x)/2 ⇒ proved down
Step-by-step explanation:
∵ sin²x = (sinx)(sinx) ⇒ add and subtract (cosx)(cosx)
(sinx)(sinx) + (cosx)(cosx) - (cosx)(cosx)
∵ (cosx)(cosx) - (sinx)(sinx) = cos(x + x) = cos2x
∴ - cos2x + cos²x = -cos2x + (1 - sin²x)
∴ 1 - cos2x - sin²x = (1 - cos2x)/2 ⇒ equality of the two sides
∴ (1 - cos2x) - 1/2(1 - cos2x) = sin²x
∴ 1/2(1 - cos2x) = sin²x
∴ sin²x = (1 - cos2x)/2
If the question is 40 -
, then you would do 16 ÷ 4 = 4, and then 40 - 4 = 36.
If the question is
, then you divide both 40 and 16 by 4, to get 10 - 4 = 6.
I hope this helps!
3 + 3 - 3 / 3 = 5
3 + 3 + 3 - 3 = 6
3 + 3 + 3 / 3 = 7
3 * 3 - 3 / 3 = 8
Initial Conditions:
length=L= 10 cm = (10*10⁻²)m
Diameter=D= 2 cm= (2*10⁻²)m
Radius= r= 0.01m
Area=A= π*r²/2 =1.57*10⁻⁴ m²
Resistance=R= 600 ohm
So, from initial conditions we find resistivity(р)
R=рL/A
R*A /L=р
(600)*(1.57*10⁻⁴)/(10*10⁻²)=р
р=0.942 Ω m
<span>As, material remains same so resistivity(p) doesn't change
</span>Lenght= L1= 15 fm= 15*10⁻¹⁵ m
Diameter= D1 = 5 cm= 5*10⁻² m
Radius= r= 0.025 m
Area= A1= π*r²/2 =9.8125*10⁻⁴ m²
R=р*L1/A1
R=(0.942 )*(15*10⁻¹⁵ )/(9.8125*10⁻⁴)
R=1.44*10⁻¹¹ Ω
Answer:
Find length, width and height of the shipping box.
Step-by-step explanation:
In order to find the volume of the shipping box, you should measure the lengths of all its dimensions, that is length, width and height.