equation for the perpendicular Bisector of the line segment whose endpoints are (-9,-8) and (7,-4)
Perpendicular bisector lies at the midpoint of a line
Lets find mid point of (-9,-8) and (7,-4)
midpoint formula is


midpoint is (-1, -6)
Now find the slope of the given line
(-9,-8) and (7,-4)


Slope of perpendicular line is negative reciprocal of slope of given line
So slope of perpendicular line is -4
slope = -4 and midpoint is (-1,-6)
y - y1 = m(x-x1)
y - (-6) = -4(x-(-1))
y + 6 = -4(x+1)
y + 6 = -4x -4
Subtract 6 on both sides
y = -4x -4-6
y= -4x -10
equation for the perpendicular Bisector y = -4x - 10
Answer:
The answer is x = 27.
Step-by-step explanation:
<h2><u><em>PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
67
Step-by-step explanation:
123£
Answer:
Sample Response: First, the like terms had to be combined using the lowest common denominator (LCD). Then the subtraction property of equality was used to isolate the variable term. Finally, both sides of the equation were multiplied by the reciprocal of the coefficient to solve for a.
Step-by-step explanation: