Step-by-step explanation:
here,,
a=3,b=10,C=120°
c^2=a^2+b^2-2ab cos120°
=(3)^2 +(10)^2 _2 (3)(10)(-1/2) [cos120°=-1/2]
=9+100-(-30)
=109+30
=139
c=(139 )1/2=11.79
c=12
3(2a-5) = 12-7a
6a-15=12-7a
6a+7a=12+15
13a= 27
27=3c-3(6-2c)
27=3c-18+6c
27+18=3c+6c
45=9c
C=45/9
C=5
6c-8-2c=-16
6c-2c=-16+8
4c=-8
C=-8/4
C=-2
Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.
Blaine's Company: 103 x 6 = 618
William's Company: 1.2 x 105 = 126
Since William's Company made 126 x Blaine's company's
126 x 618 = 77868.00
(I am not sure if I did this right I tried though)