if you've read those links already, you'd know what we're doing here.
we'll move the repeating part to the left-side of the dot, by multiplying by "1" and as many zeros as needed, or 10 at some power pretty much.
on 0.13 we need 100 to get 13.13.... and on 0.1234, we need 10000 to get 1234.1234....
![\bf 0.\overline{13}~\hspace{10em}x=0.\overline{13} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{|lll|ll} \cline{1-3} &&\\ 100\cdot 0.\overline{13}& = & 13.\overline{13}\\ 100\cdot x&& 13 + 0.\overline{13}\\ 100x&&13+x \\&&\\ \cline{1-3} \end{array}\implies \begin{array}{llll} 100x=13+x\implies 99x=13 \\\\ x=\cfrac{13}{99} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 0.\overline{1234}~\hspace{10em}x=0.\overline{1234} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%20%5Cbf%200.%5Coverline%7B13%7D~%5Chspace%7B10em%7Dx%3D0.%5Coverline%7B13%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7B%7Clll%7Cll%7D%0A%5Ccline%7B1-3%7D%0A%26%26%5C%5C%0A100%5Ccdot%200.%5Coverline%7B13%7D%26%20%3D%20%26%2013.%5Coverline%7B13%7D%5C%5C%0A100%5Ccdot%20x%26%26%2013%20%2B%200.%5Coverline%7B13%7D%5C%5C%0A100x%26%2613%2Bx%0A%5C%5C%26%26%5C%5C%0A%5Ccline%7B1-3%7D%0A%5Cend%7Barray%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%0A100x%3D13%2Bx%5Cimplies%2099x%3D13%0A%5C%5C%5C%5C%0Ax%3D%5Ccfrac%7B13%7D%7B99%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A0.%5Coverline%7B1234%7D~%5Chspace%7B10em%7Dx%3D0.%5Coverline%7B1234%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A~%5Cdotfill%20)

Answer:
3.2x=24
x=24*3.2
x=7.5
Step-by-step explanation:
D
hope this helps
this is because the .3 is repeating but it is the same number repeating(it is a pattern)