1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
14

5y - 3z + 4y -1z - 3y; y = 3 and z = -2

Mathematics
1 answer:
Dafna11 [192]3 years ago
8 0
5(3)-3(-2)
15-(-6)=
15+6=21
a negative plus a negative is a positive so its 21
4(3)-3(-2)
12-(-6)
12+6=18
21+18=39
You might be interested in
In ∆MNP, m∠N = 90º, NH – altitude, m∠P = 21º, PM = 4 cm. Find MH.
Sveta_85 [38]

Answer:

0.51 cm

Step-by-step explanation:

In right triangle MNP, MP = 4 cm, m∠N = 90°, m∠P = 21°

By the sine definition,

\sin \angle P=\dfrac{\text{Opposite leg}}{\text{Hypotenuse}}=\dfrac{MN}{MP}\\ \\MN=MP\sin \angle P\\ \\MN=4\sin 21^{\circ}\approx 1.43\ cm

Now, consider right triangle HMN (it is right because NH is an altitude). By the cosine definition,

\cos \angle M=\dfrac{\text{Adjacent leg}}{\text{Hypotenuse}}=\dfrac{MH}{MN}\\ \\MH=MN\cos \angle M

In the right triangle, two acute angles are always complementary, so

m\angle M=90^{\circ}-m\angle P=90^{\circ}-21^{\circ}=69^{\circ}

Thus,

MH=1.43\cos 69^{\circ}\approx 0.51\ cm

7 0
3 years ago
Find the derivative of
kirill [66]

Answer:

\displaystyle y'(1, \frac{3}{2}) = -3

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \frac{3}{2x^2}<u />

\displaystyle \text{Point} \ (1, \frac{3}{2})

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Rewrite]:                                            \displaystyle y = \frac{3}{2}x^{-2}
  2. Basic Power Rule:                                                                                             \displaystyle y' = -2 \cdot \frac{3}{2}x^{-2 - 1}
  3. Simplify:                                                                                                             \displaystyle y' = -3x^{-3}
  4. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = \frac{-3}{x^3}

<u>Step 3: Solve</u>

  1. Substitute in coordinate [Derivative]:                                                              \displaystyle y'(1, \frac{3}{2}) = \frac{-3}{1^3}
  2. Evaluate exponents:                                                                                         \displaystyle y'(1, \frac{3}{2}) = \frac{-3}{1}
  3. Divide:                                                                                                               \displaystyle y'(1, \frac{3}{2}) = -3

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Find the value of x then classify the triangle
Sliva [168]

Answer: 88º

Step-by-step explanation:

180-47=133-45=88

4 0
3 years ago
Evaluate the integral. (remember to use absolute values where appropriate. Use c for the constant of integration.) 5 cot5(θ) sin
ozzi

I=5\int \frac{cos^{4}\theta }{sin\theta }\times cos\theta d\theta \\\\I=5\int \left ( 1-sin^{2}\theta  \right )^{2}\times \frac{cos\theta }{sin\theta }d\theta \\put\ \sin\theta =t\\\\dt=cos\theta d\theta \\\\I=5\int\frac{t^{4}+1-2t^{2}}{t}dt\ \ \ \ \ \ \ \ \ \ \because (a-b)^2=a^2+b^2-2ab\\\\I=5\left ( \int t^{3}dt + \int \frac{1}{t} -2\int t \right )dt

by using the integration formula

we get,

\\I=5\left ( \frac{t^{4}}{4} +logt -t^{2}\right )\\\\I=\frac{5}{4}t^{4}+5\log t-5t^{2}+c

now put the value of t=\sin\theta in the above equation

we get,

\int 5\cot^5\theta \sin^4\theta d\theta=\frac{5}{4}sin^{4}\theta+5\log \sin\theta - 5sin^{2} \theta+c

hence proved

7 0
3 years ago
7. The points P(2, -3), Q(3, -2) and R(8, z) are
Hatshy [7]

Answer:

z = 3

Step-by-step explanation:

Since the points are collinear then the slopes between the points are equal.

Calculate the slope m using the slope formula

m = \frac{y_{2}-y_{1}  }{x_{2}-x_{1}  }

with (x₁, y₁ ) = P (2, - 3) and (x₂, y₂ ) = Q (3, - 2)

m = \frac{-2+3}{3-2} = 1

Repeat with

(x₁, y₁ ) = Q (3, - 2) and (x₂, y₂ ) = R (8, z )

m = \frac{z+2}{8-3} = \frac{z+2}{5} , then

\frac{z+2}{5} = 1 ( multiply both sides by 5 )

z + 2 = 5 ( subtract 2 from both sides )

z = 3

4 0
3 years ago
Other questions:
  • Kenneth completed 0.65 of the total number of sit-ups his coach required .what fraction best represents this amount?
    12·1 answer
  • Which best describes the association shown in the scatter plot?
    9·2 answers
  • Name three exponent rules
    12·2 answers
  • What is the apparent solution to the system of equations graphed above?
    12·2 answers
  • What is 481,026.03 in expanded form using powers of ten.
    5·1 answer
  • What is the experimental probability of drawing a red marble, given the following results?
    13·1 answer
  • Round to the nearest hundredth<br> 1.359.377
    12·1 answer
  • Solve the equation. 3/5K+5=7
    5·2 answers
  • A car dealership increased the price of a certain car by .13% The original price was 38,600.
    6·1 answer
  • !!!!Plz Help!!!! How does the slop of AB compare with the slope of the parallel line as you move points A, B, and C? What conclu
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!