6.7 grams of lithium chloride will be produced.
<h3><u>Explanation:</u></h3>
Lithium chlorate is LiClO₃ and lithium chloride is LiCl. The reaction is,
2LiClO₃ = 2LiCl +3O₂.
So here, 2 moles of lithium chlorate produces 2 moles of lithium chloride.
Or, one molecule of lithium chlorate will produce one mole of lithium chloride.
Molecular weight of lithium chlorate =
= 90.4.
So, 14.3 grams of lithium chlorate has 0.16 moles of lithium chlorate.
Thereby, moles of lithium chloride produced is 0.16 moles.
Molecular weight of lithium chloride =
= 42.4 grams.
So weight of lithium chloride produced =
= 6.7 grams.
Thus, weight of lithium chloride produced will be 6.7 grams.
Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) S₈
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
Molar mass of S₈ = 8 * 32 g/mol. = 256 g/mol.
(b) C₂H₁₂
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
Carbon , C = 12 g/mol
Molar mass of C₂H₁₂ = ( 2 * 12 ) + (12 * 1 ) = 36 g /mol
(c) Sc₂(SO₄)₃
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
oxygen , O = 16 g/mol.
scandium , Sc = 45 g/mol.
Molar mass of Sc₂(SO₄)₃ = (2 * 45 ) + ( 3 *32 ) + ( 12 * 16 ) = 378 g /mol
(d) CH₃COCH₃ (acetone)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of CH₃COCH₃ (acetone) = (3 * 12 ) + ( 1 * 16 ) + ( 6 * 1 ) = 58g/mol
(e) C₆H₁₂O₆ (glucose)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of C₆H₁₂O₆ (glucose) = ( 6 * 12 ) + ( 12 * 1 ) + ( 6 * 16 ) = 108g/mol.
342.15 g/mol is the molar mass of Al2(SO4)3 Aluminium sulfate, This is what I found I hope this is right. Hope this helps;)
C or a one of those hope it helps !!!!
Does mass<span> alone provide no information about the amount or size of a measured quantity? No, we need combine </span>mass<span> and </span>volume<span> into "one equation" to </span>determine<span> "</span>density<span>" provides more ... </span>g/mL<span>. An </span>object has<span> a mass of </span>75 grams<span> and a volume of </span>25 cc<span>. ... A </span>certain object weighs 1.25 kg<span> and </span>has<span> a </span>density of<span> </span>5.00 g/<span>mL</span>