1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
7

What is the prime factor of 8

Mathematics
1 answer:
ExtremeBDS [4]3 years ago
5 0
Prime factor is a factor that is a prime number.
Prime factors of :
8 : 2 × 2 × 2. Also can be written as
{2}^{3}
12 : 2 × 2 × 3. Also can be written as
{2}^{2} \times 3

20 : 2 × 2 × 5. Also can be written as
{2}^{2} \times 5

30 : 2 × 3 × 5

56 : 2 × 2 × 2 ×7. Also can be written as
{2}^{3} \times 7

70 : 2 × 5 × 7

You can find all of them by using Factor Tree [ as shown in the picture] or Dividing by prime numbers.

You might be interested in
Help! Give brainliest!
dsp73
  • Initial population=145,201

Total years=2037-2001=36

\\ \sf\longmapsto S=P\left(1+\dfrac{r}{100}\right)^t

\\ \sf\longmapsto S=145201\left(1+\dfrac{5}{100}\right)^{36}

\\ \sf\longmapsto S=145201\left(\dfrac{105}{100}\right)^{36}

\\ \sf\longmapsto S=145201(1.05)^{36}

\\ \sf\longmapsto S=145201(5.79)

\\ \sf\longmapsto S\approx 840713

4 0
3 years ago
Read 2 more answers
Using the given zero, find one other zero of f(x). Explain the process you used to find your solution.
IRISSAK [1]

Answer:

One other zero is 2+3i

Step-by-step explanation:

If 2-3i is a zero and all the coefficients of the polynomial function is real, then the conjugate of 2-3i is also a zero.

The conjugate of (a+b) is (a-b).

The conjugate of (a-b) is (a+b).

The conjugate of (2-3i) is (2+3i) so 2+3i is also a zero.

Ok so we have two zeros 2-3i and 2+3i.

This means that (x-(2-3i)) and (x-(2+3i)) are factors of the given polynomial.

I'm going to find the product of these factors (x-(2-3i)) and (x-(2+3i)).

(x-(2-3i))(x-(2+3i))

Foil!

First: x(x)=x^2

Outer: x*-(2+3i)=-x(2+3i)

Inner:  -(2-3i)(x)=-x(2-3i)

Last:  (2-3i)(2+3i)=4-9i^2 (You can just do first and last when multiplying conjugates)

---------------------------------Add together:

x^2 + -x(2+3i) + -x(2-3i) + (4-9i^2)

Simplifying:

x^2-2x-3ix-2x+3ix+4+9  (since i^2=-1)

x^2-4x+13                     (since -3ix+3ix=0)

So x^2-4x+13 is a factor of the given polynomial.

I'm going to do long division to find another factor.

Hopefully we get a remainder of 0 because we are saying it is a factor of the given polynomial.

                x^2+1

              ---------------------------------------

x^2-4x+13|  x^4-4x^3+14x^2-4x+13                    

              -( x^4-4x^3+ 13x^2)

            ------------------------------------------

                                 x^2-4x+13

                               -(x^2-4x+13)

                               -----------------

                                    0

So the other factor is x^2+1.

To find the zeros of x^2+1, you set x^2+1 to 0 and solve for x.

x^2+1=0

x^2=-1

x=\pm \sqrt{-1}

x=\pm i

So the zeros are i, -i , 2-3i , 2+3i

7 0
3 years ago
The 250 gallons of maple sap will be
Darya [45]

Answer:

7.5 gallons

Step-by-step explanation:

3 x 250/100

= 7.5

8 0
3 years ago
Pls help with this question
kirill115 [55]

Answer: first answer choice

Step-by-step explanation:

8 0
3 years ago
The given matrix is the augmented matrix for a linear system. Use technology to perform the row operations needed to transform t
shtirl [24]

Answer:

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

Step-by-step explanation:

As the given Augmented matrix is

\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 1 :

r_{1}↔r_{1} - r_{2}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 2 :

r_{3}↔r_{3} - 8r_{1}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]

Step 3 :

r_{2}↔\frac{r_{2}}{7}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]

Step 4 :

r_{1}↔r_{1} + 14r_{2} , r_{3}↔r_{3} - 124r_{2}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]

Step 5 :

r_{3}↔\frac{r_{3}. 7}{254}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]

Step 6 :

r_{1}↔r_{1} - 4r_{3} , r_{2}↔r_{2} + \frac{1}{7} r_{3}

\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]

∴ we get

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

6 0
3 years ago
Other questions:
  • Evaluate (−25)(38)/(−34).
    10·1 answer
  • 289 and y more is 206
    6·1 answer
  • What is a coupon on a bond similar to?
    12·1 answer
  • Use the equation v = h - 6 to find the value of v when h = 9.
    10·2 answers
  • A round mirror has a radius of 5.3 inches. What is the area of the mirror in square inches, rounded to the nearest tenth?
    10·1 answer
  • Round 15.6895 to the nearest tenth<br><br> A) 15.7<br> B) 15.6<br> C) 15.68<br> D) 15.69
    5·2 answers
  • Toya can run one lap of the track in 1 min. 3 sec., which is 90% of her younger sister niki's time. what is niki's time for one
    10·1 answer
  • What are the odds of rolling a 5 on a standard number cube? A. 1/5 B. 1/6 C. 5/6 D. 4/5
    6·1 answer
  • How many significant figures does the following number have: 0. 0 0 2 0 4 0
    14·1 answer
  • Using angle A as the reference angle, what is the ratio of the opposite side to the adjacent side?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!