Answer:
i) Equation can have exactly 2 zeroes.
ii) Both the zeroes will be real and distinctive.
Step-by-step explanation:
is the given equation.
It is of the form of quadratic equation
and highest degree of the polynomial is 2.
Now, FUNDAMENTAL THEOREM OF ALGEBRA
If P(x) is a polynomial of degree n ≥ 1, then P(x) = 0 has exactly n roots, including multiple and complex roots.
So, the equation can have exact 2 zeroes (roots).
Also, find discriminant D = 
⇒ D = 37
Here, since D > 0, So both the roots will be real and distinctive.
I think the answer is option e mn
40+40+40= 120. If each inch is 40 then add 40 3 times
do you need to include the wiggle infront of the first bracket? if not;
(x+1) ÷ [(x^2+2) x (2x-3dx)]
x^2 x 2x = 2x^3
x^2 x -3dx = -3dx^3
2 x 2x = 4x
2 x -3dx = - 6dx
i cant find a way to make it equal 0 so i think the answer is just
x+1 over 2x^3 - 3dx^3 + 4x - 6dx as a fraction
3.06 rounded to the nearest whole number is 3.
.06 is much closer to 0 than it is to 1, so round down.
3.06 rounded down is 3, so that is your answer.