Your answer would be x =211
Answer:
Below
Step-by-step explanation:
Population: 10,000
Sample: 250
Answer:
It is proportional
Step-by-step explanation:
The pool is being filled at a constant rate.
Answer:
Vertical Asymptote:

Horizontal asymptote:
it does not exist
Step-by-step explanation:
we are given

Vertical asymptote:
we know that vertical asymptotes are values of x where f(x) becomes +inf or -inf
we know that any log becomes -inf when value inside log is zero
so, we can set value inside log to zero
and then we can solve for x

we get

Horizontal asymptote:
we know that
horizontal asymptote is a value of y when x is +inf or -inf
For finding horizontal asymptote , we find lim x-->inf or -inf



so, it does not exist