Answer:
The probability that at least 1 car arrives during the call is 0.9306
Step-by-step explanation:
Cars arriving according to Poisson process - 80 Cars per hour
If the attendant makes a 2 minute phone call, then effective λ = 80/60 * 2 = 2.66666667 = 2.67 X ≅ Poisson (λ = 2.67)
Now, we find the probability: P(X≥1)
P(X≥1) = 1 - p(x < 1)
P(X≥1) = 1 - p(x=0)
P(X≥1) = 1 - [ (e^-λ) * λ^0] / 0!
P(X≥1) = 1 - e^-2.67
P(X≥1) = 1 - 0.06945
P(X≥1) = 0.93055
P(X≥1) = 0.9306
Thus, the probability that at least 1 car arrives during the call is 0.9306.
Step-by-step explanation:
A. -12
B. -8
C. 8
D. 12
hshhshzhususududhdhdhshzyzgshsgsgzyz.
sorry it has to be 20 characters
------------------------------------------------
Ratio
------------------------------------------------
3 : 1
------------------------------------------------
Find total parts
------------------------------------------------
3 + 1 = 4
------------------------------------------------
Split the 32 according to the parts
------------------------------------------------
4 parts = 32
1 part = 32 ÷ 4
1 part = 8
3 part = 8 x 3 = 24
------------------------------------------------
Split the 32 into the ratio
------------------------------------------------
24 : 8
------------------------------------------------
Answer: 24 : 8
------------------------------------------------
Answer:
36:)
Step-by-step explanation: