Answer:
10 cuadrados
Step-by-step explanation:
Si uno de los lados de rectangulo es de 4cm entonces el lado parallelo tambien es de 4cm. Eso nos da 8cm del perimetro y nos quedan los otros dos lados que tienen la misma medida. Entonces dividimos el resto del perimetro por 2.
28 - 8 = 20cm
20cm / 2cm = 10cm
Ahora que tenemos todas las medidas podemos multiplicar el largo por el ancho para calcular el area del rectangulo
10cm * 4cm = 40
el cuadrado de 2cm tendra un area de
2cm * 2cm = 4
Ahora simplemente dividimos el area del rectangulo por el area del cuadrado para saber cuantos cuadrados necesitamos para armar ese rectangulo
40
/ 4
= 10 cuadrados
Answer:Geometry allows students to connect mapping objects in the classroom to real-world contexts regarding direction and place. Understanding of spatial relationships is also considered important in the role of problem solving and higher-order thinking skills.
Step-by-step explanation:
Answer:
we are looking for F
but in the question it stated that f(n) and at the end it also stated that f(1) so n=1
Step-by-step explanation:
we are using BODMAS
f(n-1)+1
f(1-1)+1=0+1
f=1
Answer:
72
Step-by-step explanation:
The pythagorean theorem states that in a right triangle A^2 + B^2 = C^2 where A and B are the two smaller sides and C is the hypotenuse.
Because of this, in this triangle 30^2 + B^2 = 78^2
Which means B^2 = 5184
And B = 72
Answer:
First angle: 60°
Second angle: 30°
Step-by-step explanation:
Let the two angles be signified by the variables x & y.
Let the first angle = x, and the second angle = y.
It is given that:
"The measure[ments] of the complementary angles...": x + y = 90°
"The measure of the first angle is 30 greater than the measure of the second angle": x = y + 30°
Use the system of equations. Plug in y + 30 for x in the first equation:
(y + 30) + y = 90
Combine like terms:
(y + y) + 30 = 90
2y + 30 = 90
Isolate the variable, y. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS. First, subtract 30 from both sides of the equation:
2y + 30 (-30) = 90 (-30)
2y = 90 - 30
2y = 60
Next, divide 2 from both sides of the equation:
(2y)/2 = (60)/2
y = 60/2
y = 30°
Plug in 30 for y in one of the equations:
x = y + 30
x = (30) + 30
x = 60°
Your answers:
First angle: 60°
Second angle: 30°